-\psi''+V\psi=k2\psi
We are looking for solutions
\psi(k,r)
\ell=0
-\psi''+V\psi=k2\psi.
A regular solution
\varphi(k,r)
\begin{align} \varphi(k,0)&=0\\ \varphir'(k,0)&=1. \end{align}
If
infty | |
\int | |
0 |
r|V(r)|<infty
\varphi(k,r)=k-1\sin(kr)+k-1
rdr'\sin(k(r-r'))V(r')\varphi(k,r'). | |
\int | |
0 |
There are two irregular solutions (sometimes called Jost solutions)
f\pm
\pmikr | |
f | |
\pm=e |
+o(1)
r\toinfty
\pmikr | |
f | |
\pm(k,r)=e |
-k-1
infty | |
\int | |
r |
dr'\sin(k(r-r'))V(r')f\pm(k,r').
If
k\ne0
f+,f-
\varphi
The Jost function is
\omega(k):=W(f+,\varphi)\equiv\varphir'(k,r)f+(k,r)-\varphi(k,r)f+,r'(k,r)
where W is the Wronskian. Since
f+,\varphi
r=0
\varphi
\omega(k)=f+(k,0)
The Jost function can be used to construct Green's functions for
\left[- | \partial2 |
\partialr2 |
+V(r)-k2\right]G=-\delta(r-r').
In fact,
| ||||
G |
,
where
r\wedger'\equivmin(r,r')
r\veer'\equivmax(r,r')