In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.
Let
C
n
n | |
F | |
q |
d
C
d=minx,yd(x,y),
where
d(x,y)
x
y
Let
Cq(n,d)
n
d
Cq(n,d,w)
Cq(n,d)
w
Denote by
|C|
C
Aq(n,d)
n
d
Aq(n,d)=
max | |
C\inCq(n,d) |
|C|.
Similarly, we define
Aq(n,d,w)
Cq(n,d,w)
Aq(n,d,w)=
max | |
C\inCq(n,d,w) |
|C|.
Theorem 1 (Johnson bound for
Aq(n,d)
If
d=2t+1
Aq(n,d)\leq
qn | |||||||||
|
(q-1)i+
{n\chooset+1 | |
(q-1) |
t+1-{d\chooset}Aq(n,d,d)}{Aq(n,d,t+1)}}.
If
d=2t+2
Aq(n,d)\leq
qn | |||||||||
|
(q-1)i+
{n\chooset+1 | |
(q-1) |
t+1}{Aq(n,d,t+1)}}.
Theorem 2 (Johnson bound for
Aq(n,d,w)
(i) If
d>2w,
Aq(n,d,w)=1.
(ii) If
d\leq2w
e
d
e
d=2e
d
e
d=2e-1
q*=q-1
Aq(n,d,w)\leq\left\lfloor
nq* | |
w |
\left\lfloor
(n-1)q* | |
w-1 |
\left\lfloor … \left\lfloor
(n-w+e)q* | |
e |
\right\rfloor … \right\rfloor\right\rfloor\right\rfloor
where
\lfloor~~\rfloor
Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on
Aq(n,d)