Jeffrey Mogil Explained

Jeffrey Mogil
Birth Name:Jeffrey Steven Mogil
Birth Date: August 24, 1966
Birth Place:Toronto, Ontario, Canada
Fields:Neuroscience, neurogenetics
Alma Mater:University of Toronto, UCLA
Known For:Pain research, transdisciplinary research, sex differences
Website:MOGILab.ca
Awards:Fellow of the Canadian Academy of Health Sciences, Fellow of the Royal Society of Canada, Distinguished Career Award of the Canadian Pain Society, Bennet Cohen Award from the International Council for Laboratory Animal Science, SGV Award, Frederick W.L. Kerr Basic Science Research Award and Elizabeth Narcessian Award for Outstanding Educational Achievement from the American Pain Society
Workplaces:University of Illinois at Urbana–Champaign, McGill University
Doctoral Advisor:John Liebeskind

Jeffrey S. Mogil, FCAHS, FRSC (born August 24, 1966) is a Canadian neuroscientist and the E.P. Taylor Professor of Pain Studies and Distinguished James McGill Professor at McGill University.[1] He is known for his work in the genetics of pain,[2] for being among the first scientists to demonstrate sex differences in pain perception,[3] and for identifying previously unknown factors and confounds that affect the integrity of contemporary pain research.[4] He has an h-index of 100.[5]

Biography

Jeffrey Mogil was born in Toronto, Ontario, Canada. He obtained his B.Sc. (Hons.) from the University of Toronto, and his Ph.D. from the University of California, Los Angeles in 1993. Following a postdoctoral fellowship at Oregon Health Sciences University, he obtained a faculty position at the University of Illinois at Urbana-Champaign from 1996 to 2001 before moving to McGill University in 2001 as full professor.

Positions

Awards

Scientific contributions

Sex differences in pain mechanisms

Mogil and colleagues have published many papers detailing how the physiological mechanisms underlying pain perception differ by sex in laboratory rodents and humans,[6] and he was among the first to call for the inclusion of female rodents in biomedical research.[7] [8] He was the founding Co-Chair of the Special Interest Group in Sex, Gender and Pain at the International Association for the Study of Pain. His team showed in 2015[9] that male and female mice were employing wholly different immune cells—microglia and T cells, respectively—in the spinal cord to process chronic pain. This finding was immediately influential within the scientific community[10] and widely covered in the media.[11] [12] [13] It was voted the #1 discovery of 2015 by Quebec Science magazine,[14] inspired an editorial in the New York Times,[15] was chosen as one of 10 milestones in pain research from 2000 BC to the present by Nature,[16] and was cited by funding agencies in Canada[17] and the United States[18] in support of new Sex as a Biological Variable policies.

Other notable sex difference findings from his group include a meta-analysis showing that women are more sensitive to pain than men;[19] morphine analgesia, stress-induced analgesia, and opioid-induced hyperalgesia are mediated by different neurochemical receptors in the two sexes (NMDA receptors and V1AR receptors in males, and MC1Rs in females) in male and female mice and humans;[20] [21] [22] [23] male and female mice have equivalent variability in pain sensitivity;[8] pain variability is due to different genes in both sexes;[24] [25] [26] female mice are more sensitive to itch than male mice;[27] pain reduces sexual desire in male but not female mice;[28] sex differences in morphine analgesia may be mediated by T cells;[29] pain affects dominance hierarchy in male but not female mice;[30] and, male but not female mice and humans display classically conditioned pain hypersensitivity.[31]

Development of rodent "Grimace scale"

For the past century, the measurement of pain in rodent biomedical research was considered complicated and imprecise, and many researchers suggested there is a mismatch between human clinical pain symptoms and established procedures in rodents.[32] [33] Based on the human Neonatal Facial Coding Scale,[34] which is itself based on the Facial Action Coding System, Mogil and colleagues developed the Mouse Grimace Scale[35] and the Rat Grimace Scale. The original findings were highly cited,[36] widely covered in the scientific press,[37] and Mogil was awarded the Bennet Cohen Award from the International Council for Laboratory Animal Science[38] and the SGV Award from the Swiss Laboratory Animal Science Association[39] for the finding. Grimace scales are now routinely used in institutional veterinary settings for the determination of post-operative pain in animals, and have been developed for 10 species: mice, rats, rabbits, cats, horses, cows, pigs, sheep, ferret, and seal.[40]

Mogil's laboratory has made a number of other advances in algesiometry or dolorimetry (i.e., pain testing in animals) including the development of an animal model of vulvodynia.[41] [42]

Demonstration of empathy in mice

Although a handful of controversial papers from the 1950s and 1960s had suggested that non-primate mammals might be capable of altruism,[43] [44] Mogil's group was the first to provide modern evidence that mice were capable of emotional contagion of pain, a form of empathy.[45] [46] They showed that mice display more pain behavior if they are tested in close proximity to other mice also in pain, but only if the two mice are familiar with each other. This finding, which was also widely covered in the press,[47] launched a renaissance of new research into the topic of rodent social abilities.[48]

Mogil's lab subsequently showed[49] that familiar (but not stranger) humans also demonstrate highly similar emotional contagion of pain, and that reduction of stress via metyrapone treatment or a shared social experience (playing the videogame Rock Band together) can elicit empathy in strangers. This study was covered in the popular press,[50] including an episode of the TED Radio Hour.[51]

Discovery of pain genes

Using both quantitative trait locus mapping and genetic association study (including GWAS) techniques, Mogil's laboratory has provided evidence for the involvement of over 25 genes with pain and analgesia. The most notable of these was the demonstration in 2003 that the MC1R gene, most well known for its mutations causing red hair,[52] is associated with Κ-opioid analgesia in women but not men. This finding was featured in the popular press.[53] [54]

Discovery of factors affecting experiments

Mogil and colleagues revealed a number of previously unidentified factors affecting the conclusions drawn from biomedical experiments. In 1996, they demonstrated  that the newly discovered orphan opioid peptide, orphanin FQ/nociception, did not produce hyperalgesia as originally reported,[55] [56] but rather was reversing the stress-induced analgesia resulting from the intracerebroventricular injection through which it was administered.[57] In 1999, they showed that different inbred strains of mice displayed very different pain sensitivity.[58]

Chief among these methodological confounds was the observation that mice display a stress response to the presence of nearby males of a number of mammalian species, including human male experimenters, calling into question the results of thousands of studies in the animal literature when the sex of the experimenter was not controlled, an animal equivalent to the "sweaty t-shirt study" in humans. This finding led to torrent of media activity, with articles on the finding in The New York Times,[59] National Geographic,[60] The Atlantic,[61] The Economist,[62] The New Yorker,[63] Time,[64] and U.S. News & World Report,[65] among others, and radio appearances on NPR’s Science Friday,[66] BBC World Service’s “Newsday[67] and CBC’s “As It Happens”.[68]

External links

Notes and References

  1. Web site: Pain Genetics Lab. 2020-07-05. www.psych.mcgill.ca.
  2. Web site: 2016-03-19. Jeffrey Mogil: Not just a disco-loving geneticist. 2020-07-05. STAT. en-US.
  3. Dance. Amber. 2019-03-27. Why the sexes don't feel pain the same way. Nature. en. 567. 7749. 448–450. 10.1038/d41586-019-00895-3. 30918396. 85527866. free. 2019Natur.567..448D .
  4. Sorge. Robert E. Martin. Loren J. Isbester. Kelsey A. Sotocinal. Susana G. Rosen. Sarah. Tuttle. Alexander H. Wieskopf. Jeffrey S. Acland. Erinn L. Dokova. Anastassia. Sternberg. Wendy. Mogil. Jeffrey S.. 2014-04-28. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods. 11. 6. 629–632. 10.1038/nmeth.2935. 24776635. 8163498. 1548-7091.
  5. Web site: Jeffrey Mogil - Google Scholar Citations. 2024-07-03. scholar.google.com.
  6. Mogil. Jeffrey S.. 2020-05-21. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nature Reviews Neuroscience. 21. 7. 353–365. 10.1038/s41583-020-0310-6. 32440016. 218772997. 1471-003X.
  7. Mogil. Jeffrey S.. 2016. Perspective: Equality need not be painful. Nature. 535. 7611. S7. 10.1038/535s7a. 27410531. 4468810. 0028-0836. free. 2016Natur.535S...7M .
  8. Mogil. Jeffrey S.. Chanda. Mona Lisa. 2005. The case for the inclusion of female subjects in basic science studies of pain. Pain. 117. 1. 1–5. 10.1016/j.pain.2005.06.020. 16098670. 40135860. 0304-3959.
  9. Sorge. Robert E. Mapplebeck. Josiane C S. Rosen. Sarah. Beggs. Simon. Taves. Sarah. Alexander. Jessica K. Martin. Loren J. Austin. Jean-Sebastien. Sotocinal. Susana G. Chen. Di. Yang. Mu. 2015-06-29. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience. 18. 8. 1081–1083. 10.1038/nn.4053. 26120961. 4772157. 1097-6256.
  10. Web site: Google Scholar. 2020-07-04. scholar.google.com.
  11. Web site: Sex Differences in Pain Pathway. 2020-07-04. The Scientist Magazine®. en.
  12. Web site: Apr 20, 2016. Sexism in mouse research can lead to medical harm to women, scientists warn. July 4, 2020. CBC.
  13. Web site: Feb 10, 2016. A Fix For Gender-Bias In Animal Research Could Help Humans. July 4, 2020. NPR.
  14. Web site: Les découvertes de l'année édition 2015.
  15. News: The Editorial Board. July 18, 2015. Why Science Needs Female Mice. The New York Times.
  16. Pain. Stephanie. 2016. Painful progress. Nature. 535. 7611. S18–S19. 10.1038/535s18a. 27410528. 4394866. 0028-0836. free. 2016Natur.535S..18P .
  17. Web site: Does sex make a difference in preclinical research. Canadian Institutes of Health Research. 2 September 2015 .
  18. Clayton. Janine Austin. 2015-10-29. Studying both sexes: a guiding principle for biomedicine. The FASEB Journal. 30. 2. 519–524. 10.1096/fj.15-279554. free . 26514164. 4714546. 0892-6638.
  19. Mogil. Jeffrey S.. 2012-11-20. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nature Reviews Neuroscience. 13. 12. 859–866. 10.1038/nrn3360. 23165262. 205508189. 1471-003X. free.
  20. Juni. Aaron. Cai. Minying. Stankova. Magda. Waxman. Amanda R.. Arout. Caroline. Klein. Gad. Dahan. Albert. Hruby. Victor J.. Mogil. Jeffrey S.. Kest. Benjamin. 2010. Sex-specific Mediation of Opioid-induced Hyperalgesia by the Melanocortin-1 Receptor. Anesthesiology. 112. 1. 181–188. 10.1097/aln.0b013e3181c53849. 19996949. 4642894. 0003-3022.
  21. Mogil. Jeffrey S. Sorge. Robert E. LaCroix-Fralish. Michael L. Smith. Shad B. Fortin. Anny. Sotocinal. Susana G. Ritchie. Jennifer. Austin. Jean-Sebastien. Schorscher-Petcu. Ara. Melmed. Kara. Czerminski. Jan. 2011-10-23. Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nature Neuroscience. 14. 12. 1569–1573. 10.1038/nn.2941. 22019732. 3225498. 1097-6256.
  22. Mogil. Jeffrey S.. Sternberg. Wendy F.. Kest. Benjamin. Marek. Przemyslaw. Liebeskind. John C.. 1993. Sex differences in the antagonism of swim stress-induced analgesia: effects of gonadectomy and estrogen replacement. Pain. 53. 1. 17–25. 10.1016/0304-3959(93)90050-y. 8316385. 9554241. 0304-3959.
  23. Nemmani. Kumar V.S.. Grisel. Judith E.. Stowe. Jennifer R.. Smith-Carliss. Richard. Mogil. Jeffrey S.. 2004. Modulation of morphine analgesia by site-specific N-methyl-d-aspartate receptor antagonists: dependence on sex, site of antagonism, morphine dose, and time. Pain. 109. 3. 274–283. 10.1016/j.pain.2004.01.035. 15157688. 39388974. 0304-3959.
  24. Mogil. Jeffrey S. Richards. Susan P. OʼToole. Laurie A. Helms. Melinda L. Mitchell. Steve R. Belknap. John K. 1997. Genetic sensitivity to hot-plate nociception in DBA/2J and C57BL/6J inbred mouse strains: possible sex-specific mediation by δ2-opioid receptors. Pain. 70. 2. 267–277. 10.1016/s0304-3959(97)03333-2. 9150302. 40024813. 0304-3959.
  25. Mogil. Jeffrey S.. Richards. Susan P.. O’Toole. Laurie A.. Helms. Melinda L.. Mitchell. Steve R.. Kest. Benjamin. Belknap. John K.. 1997-10-15. Identification of a Sex-Specific Quantitative Trait Locus Mediating Nonopioid Stress-Induced Analgesia in Female Mice. The Journal of Neuroscience. 17. 20. 7995–8002. 6793900. 10.1523/jneurosci.17-20-07995.1997. 9315917. 7661162. 0270-6474. free.
  26. Mogil. J. S.. Wilson. S. G.. Chesler. E. J.. Rankin. A. L.. Nemmani. K. V. S.. Lariviere. W. R.. Groce. M. K.. Wallace. M. R.. Kaplan. L.. Staud. R.. Ness. T. J.. 2003-03-27. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proceedings of the National Academy of Sciences. 100. 8. 4867–4872. 10.1073/pnas.0730053100. 12663858. 153647. 0027-8424. free . 2003PNAS..100.4867M .
  27. Green. Amanda D.. Young. Katrina K.. Lehto. Sonya G.. Smith. Shad B.. Mogil. Jeffrey S.. 2006. Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain. 124. 1. 50–58. 10.1016/j.pain.2006.03.023. 16697529. 37352122. 0304-3959.
  28. Farmer. M. A.. Leja. A.. Foxen-Craft. E.. Chan. L.. MacIntyre. L. C.. Niaki. T.. Chen. M.. Mapplebeck. J. C. S.. Tabry. V.. Topham. L.. Sukosd. M.. 2014-04-23. Pain Reduces Sexual Motivation in Female But Not Male Mice. Journal of Neuroscience. 34. 17. 5747–5753. 10.1523/jneurosci.5337-13.2014. 24760835. 3996207. 0270-6474.
  29. Rosen. Sarah F.. Ham. Boram. Haichin. Michael. Walters. Ilana C.. Tohyama. Sarasa. Sotocinal. Susana G.. Mogil. Jeffrey S.. 2019. Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences. PAIN. 160. 2. 358–366. 10.1097/j.pain.0000000000001420. 30335680. 53011244. 0304-3959.
  30. Tansley. Shannon N.. Tuttle. Alexander H.. Wu. Neil. Tohyama. Sarasa. Dossett. Kimberly. Gerstein. Lindsay. Ham. Boram. Austin. Jean-Sebastien. Sotocinal. Susana G.. Mogil. Jeffrey S.. 2018-09-19. Modulation of social behavior and dominance status by chronic pain in mice. Genes, Brain and Behavior. 18. 1. e12514. 10.1111/gbb.12514. 30125473. 52050642. 1601-1848. free.
  31. Martin. Loren J.. Acland. Erinn L.. Cho. Chulmin. Gandhi. Wiebke. Chen. Di. Corley. Elizabeth. Kadoura. Basil. Levy. Tess. Mirali. Sara. Tohyama. Sarasa. Khan. Sana. 2020. Male-Specific Conditioned Pain Hypersensitivity in Mice and Humans. Current Biology. 30. 3. 556–559. 10.1016/j.cub.2020.01.022. 32017873. 211019337. 0960-9822. free. 2020CBio...30..556M .
  32. Mogil. Jeffrey S.. Crager. Sara E.. 2004. What should we be measuring in behavioral studies of chronic pain in animals?. Pain. 112. 1. 12–15. 10.1016/j.pain.2004.09.028. 15494180. 28596745. 0304-3959.
  33. Vierck. C. J.. Hansson. P. T.. Yezierski. R. P.. 2008. Clinical and pre-clinical pain assessment: Are we measuring the same thing?. Pain. 135. 1. 7–10. 10.1016/j.pain.2007.12.008. 18215466. 28168956. 0304-3959.
  34. Grunau. Ruth V.E.. Craig. Kenneth D.. 1987. Pain expression in neonates: facial action and cry. Pain. 28. 3. 395–410. 10.1016/0304-3959(87)90073-x. 3574966. 24318807. 0304-3959.
  35. Langford. Dale J. Bailey. Andrea L. Chanda. Mona Lisa. Clarke. Sarah E. Drummond. Tanya E. Echols. Stephanie. Glick. Sarah. Ingrao. Joelle. Klassen-Ross. Tammy. LaCroix-Fralish. Michael L. Matsumiya. Lynn. 2010-05-09. Coding of facial expressions of pain in the laboratory mouse. Nature Methods. 7. 6. 447–449. 10.1038/nmeth.1455. 20453868. 16703705. 1548-7091.
  36. Web site: Google Scholar. Google Scholar.
  37. Web site: Mice pull pained expressions. 2020-07-04. Scientific American. en.
  38. Web site: Bennet Cohen Award.
  39. Web site: SGV Award.
  40. Chambers. Christine T.. Mogil. Jeffrey S.. 2015. Ontogeny and phylogeny of facial expression of pain. PAIN. 156. 5. 798–799. 10.1097/j.pain.0000000000000133. 25887392. 2060896. 0304-3959. free.
  41. Farmer. M. A.. Taylor. A. M.. Bailey. A. L.. Tuttle. A. H.. MacIntyre. L. C.. Milagrosa. Z. E.. Crissman. H. P.. Bennett. G. J.. Ribeiro-da-Silva. A.. Binik. Y. M.. Mogil. J. S.. 2011-09-21. Repeated Vulvovaginal Fungal Infections Cause Persistent Pain in a Mouse Model of Vulvodynia. Science Translational Medicine. 3. 101. 101ra91. 10.1126/scitranslmed.3002613. 21937756. 3243907. 1946-6234.
  42. Mogil. Jeffrey S.. 2009-03-04. Animal models of pain: progress and challenges. Nature Reviews Neuroscience. 10. 4. 283–294. 10.1038/nrn2606. 19259101. 205504814. 1471-003X.
  43. Church. Russell M.. 1959. Emotional reactions of rats to the pain of others.. Journal of Comparative and Physiological Psychology. 52. 2. 132–134. 10.1037/h0043531. 13654562. 0021-9940.
  44. Rice. George E.. Gainer. Priscilla. 1962. "Altruism" in the albino rat.. Journal of Comparative and Physiological Psychology. 55. 1. 123–125. 10.1037/h0042276. 14491896. 0021-9940.
  45. Langford. D. J.. 2006-06-30. Social Modulation of Pain as Evidence for Empathy in Mice. Science. 312. 5782. 1967–1970. 10.1126/science.1128322. 16809545. 2006Sci...312.1967L . 26027821. 0036-8075.
  46. Preston. Stephanie D.. de Waal. Frans B. M.. 2002. Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences. 25. 1. 1–20. 10.1017/s0140525x02000018. 12625087. 0140-525X.
  47. News: Carey . Benedict . Benedict Carey . 2006-07-04 . Message From Mouse to Mouse: I Feel Your Pain. en-US . The New York Times . 2020-07-05 . 0362-4331.
  48. Panksepp . Jaak . Jaak Panksepp . Panksepp . Jules B. . 2013 . Toward a cross-species understanding of empathy . Trends in Neurosciences . 36 . 8 . 489–496 . 10.1016/j.tins.2013.04.009 . 23746460 . 3839944 . 0166-2236.
  49. Martin . L.J. . Hathaway . G. . Isbester . K.. Mirali . S. . Acland . E.L. . Niederstrasser . N. . Slepian . P.M. . Trost . Z. . Bartz. J.A. . Sapolsky. R.M. . Robert Sapolsky. Sternberg . W.F. . 2015 . Reducing Social Stress Elicits Emotional Contagion of Pain in Mouse and Human Strangers . Current Biology . 25 . 3 . 326–332 . 10.1016/j.cub.2014.11.028 . 25601547 . 1082428 . 0960-9822 . free . 2015CBio...25..326M .
  50. News: Sapolsky . Robert M. . Robert Sapolsky . 2015-01-16 . When Stress Rises, Empathy Suffers . en-US . Wall Street Journal . 2020-07-05 . 0099-9660.
  51. Web site: Jeff Mogil: How Can Playing A Game Make You More Empathetic?. 2020-07-05. NPR.org. en.
  52. Valverde. Paloma. Healy. Eugene. Jackson. Ian. Rees. Jonathan L.. Thody. Anthony J.. 1995. Variants of the melanocyte–stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genetics. 11. 3. 328–330. 10.1038/ng1195-328. 7581459. 7980311. 1061-4036.
  53. News: Sex and drugs. The Economist. 2020-07-05. 0013-0613.
  54. News: Stoic Redheads . subscription . https://web.archive.org/web/20150529180723/http://www.nytimes.com/2005/12/11/magazine/stoic-redheads.html . 29 May 2015 . . 11 December 2005 . Amy . Sullivan . Amy Sullivan . 22 May 2010.
  55. Meunier. Jean-Claude. 1997. Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. European Journal of Pharmacology. 340. 1. 1–15. 10.1016/s0014-2999(97)01411-8. 9527501. 0014-2999.
  56. Reinscheid . R. K. . Nothacker . H.-P. . Bourson . A. . Ardati . A. . Henningsen . R. A. . Bunzow . J. R. . Grandy . D. K. . Langen . H. . Monsma . F. J.. Civelli . O. . Olivier Civelli . 1995-11-03 . Orphanin FQ: A Neuropeptide That Activates an Opioidlike G Protein-Coupled Receptor . Science . 270 . 5237 . 792–794 . 10.1126/science.270.5237.792 . 7481766 . 1995Sci...270..792R . 38117854 . 0036-8075.
  57. Mogil . J.S . Grisel . J.E . Reinscheid . R.K . Civelli . O . Belknap . J.K . Grandy . D.K . 1996 . Orphanin FQ is a functional anti-opioid peptide . Neuroscience . 75 . 2 . 333–337 . 10.1016/0306-4522(96)00338-7 . 8930999 . 30046252 . 0306-4522.
  58. Mogil. Jeffrey S. Wilson. Sonya G. Bon. Karine. Eun Lee. Seo. Chung. Kyungsoon. Raber. Pnina. Pieper. Jeanne O. Hain. Heather S. Belknap. John K. Hubert. Lawrence. Lawrence Hubert. Elmer. Greg I. 1999. Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain. 80. 1. 67–82. 10.1016/s0304-3959(98)00197-3. 10204719. 17604906. 0304-3959.
  59. News: Quenqua. Douglas. 2014-04-28. For Lab Rats, a 'Male Scientist' Effect. en-US. The New York Times. 2020-07-05. 0362-4331.
  60. Web site: April 29, 2014. Lab Animals Stressed Out by Men, Study Finds.
  61. Web site: Ohikuare. Judith. 2014-04-30. Male Scientists' Threat to the Integrity of Research. 2020-07-05. The Atlantic. en-US.
  62. News: Sex, writhes and videotape. The Economist. 2020-07-05. 0013-0613.
  63. Morris. B.. May 2, 2014. Why do mice fear men?. .
  64. Study: The Smell of Men Stresses Out Lab Mice. 2020-07-05. Time.
  65. Web site: Preidt. R.. April 28, 2014. Lab Mice Stressed Out By Men, But Not Women, Study Finds.
  66. Web site: May 2, 2014. Male researchers may increase stress in lab mice.
  67. News: April 30, 2014. BBC News. World Service.
  68. News: April 29, 2014. CBC News. As It Happens.