Jean Salençon Explained

Jean Salençon is a French physicist born on November 13, 1940. He is a member of the French Academy of Sciences and the French Academy of Technologies.

Biography

An engineer with degrees from the École Polytechnique (X1959) and the École nationale des ponts et chaussées (1964), a doctor of science (Université Pierre et Marie Curie, 1969), Jean Salençon was a professor at the École nationale des ponts et chaussées from 1977 to 1998 and a professor at the École polytechnique from 1982 to 2005. He has also taught at several prestigious schools and universities in France and abroad. He was non-resident Rector of CISM (Udine) from 2004 to 2012 and a member of several university or industrial scientific councils in France and abroad and of the Board of Directors of the Conservatoire national des Arts et Métiers (CNAM) from 2005 to 2011.[1]

A member of the Academy of Sciences since 1988, he was its president in 2009 and 2010[2] and, as such, chaired the Institut de France in 2009. Jean Salençon is an honorary general engineer in the field of civil engineering and was a founding member of the Academy of Technology.[3]

Scientific work

Jean Salençon's research work concerns the mechanics of continuous media,[4] [5] [6] the calculation of structures and civil engineering structures, and the irreversible behaviour of solid materials for industrial applications.

He was particularly interested in the irreversible behaviour of materials (plasticity,[7] [8] [9] [10] viscoelasticity[11] [12] and their industrial applications. He is the author of the theory of computation at break[13] [14] which he implemented for the first global computation of the bearing capacity of surface foundations on homogeneous or heterogeneous isotropic soils[15] [16] or anisotropic soils[17] [18] and also for stability analyses of earth and reinforced soil structures.[19] In the case of foundations or structures subjected to seismic loads, the method is used for "pseudo-static" analyses.[20] [21] He also developed this theory in the probabilistic framework both from the point of view of material strength and stress and showed that it is the theoretical basis for ultimate limit state design (ULSD[22]), which is incorporated in some current design regulations.

Honours and awards

He is a member of the Academy of Sciences, the Academy of Technology, the Istituto Lombardo, Milan (foreign member), the Academia das Ciéncias de Lisboa (foreign member), the Hungarian Academy of Sciences (honorary member), the Academia europaea,[23] the Hong Kong Institute for advanced study (Senior Fellow),[24] the Montpellier Academy of Sciences and Letters (correspondent).

He is Commandeur of the Ordre de la Légion d'Honneur, Commandeur of the Palmes Académqiues and Officier of the Ordre du Mérite.

Notes and References

  1. Web site: Conservatoire National des Arts et Métiers.
  2. Web site: Académie des sciences.
  3. Web site: Académie des technologies.
  4. Salençon, J., Handbook of Continuum Mechanics, Berlin, Springer, 2001
  5. Salençon, J., Mécanique des milieux continus, Paris, Éditions de l’École polytechnique, Palaiseau ; Ellipses, tome i. + cd-rom, (2016). tome ii. + cd-rom, (2007). tome iii, (2016)
  6. Salençon, J., Virtual Work Approach to Mechanical Modeling, ISTE – Wiley, Wiley online library, 2018
  7. Salençon, J., Théorie de la plasticité pour les applications à la mécanique des sols, Paris, Eyrolles, 1974
  8. Salençon, J., Application of the Theory of Plasticity in Soil Mechanics, Chichester, John Wiley and Sons Ltd, 1977
  9. Salençon, J., Plasticité pour la mécanique des sols. Limit Analysis and Rheological Approach in Soil Mechanics, W. Olszak et L. Suklje ed. Springer-Verlag, 1979, p. 95-166
  10. Salençon, J., de l’Élasto-plasticité au Calcul à la rupture, Paris, Editions de l’École polytechnique, Palaiseau ; Ellipses, 2002
  11. Salençon, J., Viscoélasticité pour le calcul des structures, Paris, Éditions de l’École polytechnique, Palaiseau & Presses des Ponts et Chaussées, 2009
  12. Salençon, J., Viscoelastic Modeling for Structural Analysis, STE – Wiley, Wiley online library, a paraître
  13. Salençon J., Calcul à la rupture et analyse limite, Paris, Presses de l’École Nationale des Ponts et Chaussées, 1983
  14. Salençon, J., Yield Design, London, UK; Hoboken, NJ, ISTE – Wiley, 2013
  15. Matar, M. et Salençon, J., Bearing capacity of strip footings. Foundation Engineering, Paris, vol. 1, G. Pilot ed. Presses de l’École Nationale des Ponts et Chaussées, 1983, p. 133-158
  16. Matar, M. et Salençon, J., Bearing capacity of circular shallow foundations, Paris, Foundation Engineering, vol. 1, G. Pilot ed. Presses de l’École Nationale des Ponts et Chaussées, 1983, p. 159-168
  17. Salençon, J. et Tristan-Lopez, A., « Analyse de la stabilité des talus en sols cohérents anisotropes », C.R.Acad.Sc.Paris. t. 290, série Série B, 23 juin 1980, p. 493-496 (lire en ligne)
  18. Salençon, J. et Tristan-Lopez, A., « Calcul à la rupture en mécanique des sols: cas des sols cohérents anisotropes », Annales de l'ITBTP, série Sols et fondations, 182, mars-avril, 1983, p. 53-83 (lire en ligne)
  19. de Buhan, P. et Salençon, J., « A comprehensive stability analysis of soil nailed structures », European Journal of Mechanics, a, 12, n°3, 1993, p. 325-345
  20. Salençon, J. et Pecker, A., « Ultimate bearing capacity of shallow foundations under inclined and eccentric loads », European Journal of Mechanics, a, 14, n°3, 1995, p. 349-396
  21. Chatzigogos, C.T., Pecker, A. et Salençon, J., « Seismic Bearing Capacity of a Circular Footing on a Heterogeneous Soil », Soils and Foundations, 47, 4, 2007, p. 783-797
  22. Carmasol, A. et Salençon, J., « Une approche probabiliste du dimensionnement des structures par le calcul à la rupture », Journal de Mécanique Théorique et Appliquée, 4, n°3, 1985, p. 305-321
  23. Web site: Academia europaea.
  24. Web site: Hong-Kong Institute.