The Jarzynski equality (JE) is an equation in statistical mechanics that relates free energy differences between two states and the irreversible work along an ensemble of trajectories joining the same states. It is named after the physicist Christopher Jarzynski (then at the University of Washington and Los Alamos National Laboratory, currently at the University of Maryland) who derived it in 1996. Fundamentally, the Jarzynski equality points to the fact that the fluctuations in the work satisfy certain constraints separately from the average value of the work that occurs in some process.
In thermodynamics, the free energy difference
\DeltaF=FB-FA
\DeltaF\leqW
with equality holding only in the case of a quasistatic process, i.e. when one takes the system from A to B infinitely slowly (such that all intermediate states are in thermodynamic equilibrium). In contrast to the thermodynamic statement above, the JE remains valid no matter how fast the process happens. The JE states:
e=\overline{e}.
Here k is the Boltzmann constant and T is the temperature of the system in the equilibrium state A or, equivalently, the temperature of the heat reservoir with which the system was thermalized before the process took place.
The over-line indicates an average over all possible realizations of an external process that takes the system from the equilibrium state A to a new, generally nonequilibrium state under the same external conditions as that of the equilibrium state B. This average over possible realizations is an average over different possible fluctuations that could occur during the process (due to Brownian motion, for example), each of which will cause a slightly different value for the work done on the system. In the limit of an infinitely slow process, the work W performed on the system in each realization is numerically the same, so the average becomes irrelevant and the Jarzynski equality reduces to the thermodynamic equality
\DeltaF=W
\DeltaF\leq\overline{W},
e=\overline{e}.
\DeltaF
\DeltaF\leq\overline{W},
in accordance with the second law of thermodynamics.
The Jarzynski equality holds when the initial state is a Boltzmann distribution (e.g. the system is in equilibrium) and the system and environment can be described by a large number of degrees of freedom evolving under arbitrary Hamiltonian dynamics. The final state does not need to be in equilibrium. (For example, in the textbook case of a gas compressed by a piston, the gas is equilibrated at piston position A and compressed to piston position B; in the Jarzynski equality, the final state of the gas does not need to be equilibrated at this new piston position).
Since its original derivation, the Jarzynski equality has been verified in a variety of contexts, ranging from experiments with biomolecules to numerical simulations.[1] The Crooks fluctuation theorem, proved two years later, leads immediately to the Jarzynski equality. Many other theoretical derivations have also appeared, lending further confidence to its generality.
Taking the log of
E[e-\beta]=e-\beta
E[W]-\DeltaF ≈
12 | |
\beta |
2 | |
\sigma | |
W |
Consider dragging an overdamped particle in a viscous fluid with temperature
T
f
t
E[W]=
12 | |
\beta |
2 | |
\sigma | |
W |
=
12 | |
\beta |
f2
2 | |
\sigma | |
x |
The work expended is
fx
x
2 | |
\sigma | |
x |
=2Dt
D
\gammaD=kBT
\gamma
In fact, for most trajectories, the work is positive, but for some rare trajectories, the work is negative, and those contribute enormously to the expectation, giving us an expectation that is exactly one.
A question has been raised about who gave the earliest statement of the Jarzynski equality. For example, in 1977 the Russian physicists G.N. Bochkov and Yu. E. Kuzovlev (see Bibliography) proposed a generalized version of the fluctuation-dissipation theorem which holds in the presence of arbitrary external time-dependent forces. Despite its close similarity to the JE, the Bochkov-Kuzovlev result does not relate free energy differences to work measurements, as discussed by Jarzynski himself in 2007.
Another similar statement to the Jarzynski equality is the nonequilibrium partition identity, which can be traced back to Yamada and Kawasaki. (The Nonequilibrium Partition Identity is the Jarzynski equality applied to two systems whose free energy difference is zero - like straining a fluid.) However, these early statements are very limited in their application. Both Bochkov and Kuzovlev as well as Yamada and Kawasaki consider a deterministic time reversible Hamiltonian system. As Kawasaki himself noted this precludes any treatment of nonequilibrium steady states. The fact that these nonequilibrium systems heat up forever because of the lack of any thermostatting mechanism leads to divergent integrals etc. No purely Hamiltonian description is capable of treating the experiments carried out to verify the Crooks fluctuation theorem, Jarzynski equality and the fluctuation theorem. These experiments involve thermostatted systems in contact with heat baths.
For earlier results dealing with the statistics of work in adiabatic (i.e. Hamiltonian) nonequilibrium processes, see:
For a comparison of such results, see:
For an extension to relativistic Brownian motion, see: