In the area of modern algebra known as group theory, the Janko group J3 or the Higman-Janko-McKay group HJM is a sporadic simple group of order
273551719 = 50232960.
J3 is one of the 26 Sporadic groups and was predicted by Zvonimir Janko in 1969 as one of two new simple groups having 21+4:A5 as a centralizer of an involution (the other is the Janko group J2). J3 was shown to exist by .
In 1982 R. L. Griess showed that J3 cannot be a subquotient of the monster group.[1] Thus it is one of the 6 sporadic groups called the pariahs.
J3 has an outer automorphism group of order 2 and a Schur multiplier of order 3, and its triple cover has a unitary 9-dimensional representation over the finite field with 4 elements. constructed it via an underlying geometry. It has a modular representation of dimension eighteen over the finite field with 9 elements.It has a complex projective representation of dimension eighteen.
J3 can be constructed by many different generators.[2] Two from the ATLAS list are 18x18 matrices over the finite field of order 9, with matrix multiplication carried out with finite field arithmetic:
\left(\begin{matrix} 0&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 8&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&8&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&8&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&8&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&8&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&8&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&8&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&8&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&8&0&0&0\\ 3&7&4&8&4&8&1&5&5&1&2&0&8&6&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&8&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&8&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&8\\ 4&8&6&2&4&8&0&4&0&8&4&5&0&8&1&1&8&5\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&8&0&0\\ \end{matrix}\right)
and
\left(\begin{matrix} 4&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 4&4&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&8&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&8&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&8&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&8&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&8&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&8&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&8&0&0&0&0&0\\ 0&0&0&0&0&8&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&8&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&8&0\\ 2&7&4&5&7&4&8&5&6&7&2&2&8&8&0&0&5&0\\ 4&7&5&8&6&1&1&6&5&3&8&7&5&0&8&8&6&0\\ 0&0&0&0&0&0&0&0&8&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&8&0&0&0&0&0&0&0&0\\ 8&2&5&5&7&2&8&1&5&5&7&8&6&0&0&7&3&8\\ \end{matrix}\right)
The automorphism group J3:2 can be constructed by starting with the subgroup PSL(2,16):4 and adjoining 120 involutions, which are identified with the Sylow 17-subgroups. Note that these 120 involutions are outer elements of J3:2. One then defines the following relation:
\left(\begin{matrix}1&1\\1&0\end{matrix}\sigmat(\nu,\nu7)\right)5=1
where
\sigma
t(\nu,\nu7)
infty → 0 → 1 → 7
Curtis showed, using a computer, that this relation is sufficient to define J3:2.
In terms of generators a, b, c, and d its automorphism group J3:2 can be presented as
a17=b8=aba-2=c2=bcb3=(abc)4=(ac)17=d2=[d,a]=[d,b]=(a3b-3cd)5=1.
A presentation for J3 in terms of (different) generators a, b, c, d is
a19=b9=aba2=c2=d2=(bc)2=(bd)2=(ac)3=(ad)3=(a2ca-3d)3=1.
found the 9 conjugacy classes of maximal subgroups of J3 as follows: