Jacobi zeta function explained
In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as
[1] \Theta(u)=\Theta4\left(
\right)
[2] Z(\phi|m)=E(\phi|m)- | E(m) |
K(m) |
F(\phi|m)
[3] Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application.
| u |
\operatorname{zn}(u,k)=Z(u)=\int | |
| 0 |
\operatorname{dn}2v-
dv
This relates Jacobi's common notation of,
\operatorname{dn}{u}=\sqrt{1-m\sin{\theta}2}
,
\operatorname{sn}u=\sin{\theta}
,
\operatorname{cn}u=\cos{\theta}
. to Jacobi's Zeta function.
Some additional relations include,
\operatorname{zn}(u,k)= | \pi |
2K |
\operatorname{dn}{u}}{\operatorname{sn}{u}}
\operatorname{zn}(u,k)= | \pi |
2K |
\operatorname{dn}{u}}{\operatorname{cn}{u}}
\operatorname{zn}(u,k)= | \pi |
2K |
\operatorname{cn}{u}}{\operatorname{dn}{u}}
\operatorname{zn}(u,k)= | \pi |
2K |
References
- https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf Pg.xxxiv
- http://mathworld.wolfram.com/JacobiZetaFunction.html
Notes and References
- Web site: Table of Integrals, Series, and Products. Gradshteyn, Ryzhik. I.S., I.M.. booksite.com.
- Book: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Abramowitz. Milton. Stegun. Irene A.. 2012-04-30. Courier Corporation. 978-0-486-15824-2. en.
- Web site: Jacobi Zeta Function. Weisstein. Eric W.. mathworld.wolfram.com. en. 2019-12-02.