Jacobi zeta function explained

In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as

\operatorname{zn}(u,k)

[1]

\Theta(u)=\Theta4\left(

\piu
2K

\right)

Z(u)=\partial
\partialu

ln\Theta(u)

=\Theta'(u)
\Theta(u)
[2]
Z(\phi|m)=E(\phi|m)-E(m)
K(m)

F(\phi|m)

[3]

Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application.

u
\operatorname{zn}(u,k)=Z(u)=\int
0

\operatorname{dn}2v-

E
K

dv

This relates Jacobi's common notation of,

\operatorname{dn}{u}=\sqrt{1-m\sin{\theta}2}

,

\operatorname{sn}u=\sin{\theta}

,

\operatorname{cn}u=\cos{\theta}

. to Jacobi's Zeta function.

Some additional relations include,

\operatorname{zn}(u,k)=\pi
2K
\Theta
1'\piu
2K
-
\Theta
1\piu
2K
\operatorname{cn
u

\operatorname{dn}{u}}{\operatorname{sn}{u}}

\operatorname{zn}(u,k)=\pi
2K
\Theta
2'\piu
2K
-
\Theta
2\piu
2K
\operatorname{sn
u

\operatorname{dn}{u}}{\operatorname{cn}{u}}

\operatorname{zn}(u,k)=\pi
2K
\Theta
3'\piu
2K
\Theta
3\piu
2K
2\operatorname{sn
u
-k

\operatorname{cn}{u}}{\operatorname{dn}{u}}

\operatorname{zn}(u,k)=\pi
2K
\Theta
4'\piu
2K
\Theta
4\piu
2K

References

Notes and References

  1. Web site: Table of Integrals, Series, and Products. Gradshteyn, Ryzhik. I.S., I.M.. booksite.com.
  2. Book: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Abramowitz. Milton. Stegun. Irene A.. 2012-04-30. Courier Corporation. 978-0-486-15824-2. en.
  3. Web site: Jacobi Zeta Function. Weisstein. Eric W.. mathworld.wolfram.com. en. 2019-12-02.