Jacobi–Anger expansion explained

In mathematics, the Jacobi–Anger expansion (or Jacobi–Anger identity) is an expansion of exponentials of trigonometric functions in the basis of their harmonics. It is useful in physics (for example, to convert between plane waves and cylindrical waves), and in signal processing (to describe FM signals). This identity is named after the 19th-century mathematicians Carl Jacobi and Carl Theodor Anger.

The most general identity is given by:[1] [2]

ei\equiv

infty
\sum
n=-infty

inJn(z)ei,

where

Jn(z)

is the

n

-th Bessel function of the first kind and

i

is the imaginary unit, i^2=-1. Substituting \theta by \theta-\frac, we also get:

ei\equiv

infty
\sum
n=-infty

Jn(z)ei.

Using the relation

J-n(z)=(-1)nJn(z),

valid for integer

n

, the expansion becomes:[1] [2]

ei\equivJ0(z)+2

infty
\sum
n=1

inJn(z)\cos(n\theta).

Real-valued expressions

The following real-valued variations are often useful as well:[3]

\begin{align} \cos(z\cos\theta)&\equivJ0(z)+2

infty
\sum
n=1

(-1)nJ2n(z)\cos(2n\theta), \\ \sin(z\cos\theta)&\equiv-2

infty
\sum
n=1

(-1)nJ2n-1(z)\cos\left[\left(2n-1\right)\theta\right], \\ \cos(z\sin\theta)&\equivJ0(z)+2

infty
\sum
n=1

J2n(z)\cos(2n\theta), \\ \sin(z\sin\theta)&\equiv2

infty
\sum
n=1

J2n-1(z)\sin\left[\left(2n-1\right)\theta\right]. \end{align}

Similarly useful expressions from the Sung Series:[4] [5]

\begin{align}

infty
\sum
\nu=-infty

J\nu(x)&=1, \\

infty
\sum
\nu=-infty

J2(x)&=1, \\

infty
\sum
\nu=-infty

J3(x)&=

1\left[1+2\cos{
3
x\sqrt{3
}}\right], \\ \sum_^\infty J_(x) &= \cos^2\left(\frac\right).\end

See also

External links

Notes and References

  1. Colton & Kress (1998) p. 32.
  2. Cuyt et al. (2008) p. 344.
  3. Abramowitz & Stegun (1965) p. 361, 9.1.42–45
  4. Sung . S. . Hovden . R. . On Infinite Series of Bessel functions of the First Kind . 2022 . math-ph . 2211.01148.
  5. Watson . G.N. . A treatise on the theory of bessel functions . Cambridge University Press . 1922.