Jackson q-Bessel function explained

In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by . The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.

Definition

\phi

by
(1)
J
\nu

(x;q)=

(q\nu+1;q)infty
(q;q)infty

(x/2)\nu{}2\phi

\nu+1
1(0,0;q

;q,-x2/4),|x|<2,

(2)
J
\nu

(x;q)=

(q\nu+1;q)infty
(q;q)infty

(x/2)\nu{}0\phi

\nu+1
1(;q

;q,-x2q\nu/4),x\inC,

(3)
J
\nu

(x;q)=

(q\nu+1;q)infty
(q;q)infty

(x/2)\nu{}1\phi

\nu+1
1(0;q

;q,qx2/4),x\inC.

They can be reduced to the Bessel function by the continuous limit:

\limq\to1

(k)
J
\nu

(x(1-q);q)=J\nu(x),k=1,2,3.

There is a connection formula between the first and second Jackson q-Bessel function :
(2)
J
\nu
2/4;q)
(x;q)=(-x
infty
(1)
J
\nu

(x;q),|x|<2.

For integer order, the q-Bessel functions satisfy
(k)
J
n

(-x;q)=(-1)n

(k)
J
n

(x;q),n\inZ,k=1,2,3.

Properties

Negative Integer Order

By using the relations :

(qm+1

m+n+1
;q)
infty=(q

;q)infty(qm+1;q)n,

(q;q)m+n=(q;q)m(qm+1;q)n,m,n\inZ,

we obtain
(k)
J
-n

(x;q)=(-1)n

(k)
J
n

(x;q),k=1,2.

Zeros

Hahn mentioned that

(2)
J
\nu

(x;q)

has infinitely many real zeros . Ismail proved that for

\nu>-1

all non-zero roots of
(2)
J
\nu

(x;q)

are real .

Ratio of q-Bessel Functions

The function

-ix-1/2

(2)
J
\nu+1

(ix1/2

(2)
;q)/J
\nu

(ix1/2;q)

is a completely monotonic function .

Recurrence Relations

The first and second Jackson q-Bessel function have the following recurrence relations (see and):

q\nu

(k)
J(x;q)=
\nu+1
2(1-q\nu)
x
(k)
J
\nu
(k)
(x;q)-J
\nu-1

(x;q),k=1,2.

(1)
J
\nu

(x\sqrt{q};q)=q\pm\nu/2

(1)
\left(J
\nu

(x;q)\pm

x
2
(1)
J
\nu\pm1

(x;q)\right).

Inequalities

When

\nu>-1

, the second Jackson q-Bessel function satisfies:
(2)
\left|J(z;q)\right|\leq
\nu
(-\sqrt{q
;q)

infty

}\left(\frac
\right)^\nu\exp\left\.(see .)

For

n\inZ

,
(2)
\left|J(z;q)\right|\leq
n
(-qn+1;q)infty\left(
(q;q)infty
|z|
2

\right)n(-|z|

2;q)
infty

.

(see .)

Generating Function

The following formulas are the q-analog of the generating function for the Bessel function (see):

infty
\sum
n=-infty
(2)
t
n
2/4;q)
(x;q)=(-x
infty

eq(xt/2)eq(-x/2t),

infty
\sum
n=-infty
(3)
t
n

(x;q)=eq(xt/2)Eq(-qx/2t).

eq

is the q-exponential function.

Alternative Representations

Integral Representations

The second Jackson q-Bessel function has the following integral representations (see and):

(2)
J(x;q)=
\nu
(q2\nu;q)infty
2\pi(q\nu;q)infty

(x/2)\nu

\pi
\int
0
2i\theta
\left(e,e-2i\theta
,-ixq(\nu+1)/2
2
ei\theta,
-ixq(\nu+1)/2
2
e-i\theta;q\right)infty
(e2i\thetaq\nu,e-2i\thetaq\nu;q)infty

d\theta,

(a1,a2,,an;q)infty:=(a1;q)infty(a2;q)infty(an;q)infty,\Re\nu>0,

where

(a;q)infty

is the q-Pochhammer symbol. This representation reduces to the integral representation of the Bessel function in the limit

q\to1

.
(2)
J(z;q)=
\nu
(z/2)\nu
\sqrt{2\pilogq-1
}\int_^\frac\,dx.

Hypergeometric Representations

The second Jackson q-Bessel function has the following hypergeometric representations (see,):

(2)
J(x;q)=
\nu
(x/2)\nu
(q;q)infty

1\phi

2/4;0;q,q
1(-x

\nu+1),

(2)
J(x;q)=
\nu
(x/2)\nu(\sqrt{q
;q)

infty

}[f(x/2,q^{(\nu+1/2)/2};q)+f(-x/2,q^{(\nu+1/2)/2};q)], \ f(x,a;q):=(iax;\sqrt)_\infty \ _3\phi_2 \left(\begin a, & -a, & 0 \\ -\sqrt, & iax \end
\sqrt,\sqrt \right).An asymptotic expansion can be obtained as an immediate consequence of the second formula.

For other hypergeometric representations, see .

Modified q-Bessel Functions

The q-analog of the modified Bessel functions are defined with the Jackson q-Bessel function (and):

(j)
I
\nu

(x;q)=ei\nu\pi/2

(j)
J
\nu

(x;q),j=1,2.

(j)
K(x;q)=
\nu
\pi
2\sin(\pi\nu)
(j)
\left\{I
-\nu
(j)
(x;q)-I
\nu

(x;q)\right\},j=1,2,\nu\inC-Z,

(j)
K
n

(x;q)=\lim\nu\to

(j)
K
\nu

(x;q),n\inZ.

There is a connection formula between the modified q-Bessel functions:
(2)
I
\nu
2/4;q)
(x;q)=(-x
infty
(1)
I
\nu

(x;q).

For statistical applications, see .

Recurrence Relations

By the recurrence relation of Jackson q-Bessel functions and the definition of modified q-Bessel functions, the following recurrence relation can be obtained (

(j)
K
\nu

(x;q)

also satisfies the same relation) :

q\nu

(j)
I(x;q)=
\nu+1
2
z
(j)
(1-q
\nu
(j)
(x;q)+I
\nu-1

(x;q),j=1,2.

For other recurrence relations, see .

Continued Fraction Representation

The ratio of modified q-Bessel functions form a continued fraction :

(2)
I(z;q)
\nu
(2)
I(z;q)
\nu-1

=\cfrac{1}{2(1-q\nu)/z+\cfrac{q\nu}{2(1-q\nu+1)/z+\cfrac{q\nu+1

}}}.

Alternative Representations

Hypergeometric Representations

The function

(2)
I
\nu

(z;q)

has the following representation :
(2)
I(z;q)=
\nu
(z/2)\nu
(q,q)infty

{}1\phi

2/4;0;q,q
1(z

\nu+1).

Integral Representations

The modified q-Bessel functions have the following integral representations :

(2)
I
\nu
2/4;q\right)
(z;q)=\left(z
infty\left(1
\pi
\pi\cos\nu\thetad\theta
i\theta
\left(e
-i\theta
z/2;q\right)
infty\left(e
z/2;q\right)infty
\int-
0
\sin\nu\pi
\pi
inftye-\nudt
t
\left(-e
-t
z/2;q\right)
infty\left(-e
z/2;q\right)infty
\int
0

\right),

(1)
K(z;q)=
\nu
1
2
inftye-\nudt
t/2
\left(-e
-t/2
z/2;q\right)
infty\left(-e
z/2;q\right)infty
\int
0

,|\argz|<\pi/2,

(1)
K
\nu
infty\cosh\nudt
t/2
\left(-e
-t/2
z/2;q\right)
infty\left(-e
z/2;q\right)infty
(z;q)=\int
0

.

See also

References