JULES explained
JULES (Joint UK Land Environment Simulator) is a land-surface parameterisation model scheme describing soil-vegetation-atmosphere interactions.[1] JULES is a community led project which evolved from MOSES, the United Kingdom Meteorological Office (Met Office) Surface Exchange Scheme.[2] It can be used as a stand-alone model or as the land surface part of the Met Office Unified Model. JULES has been used to help decide what tactics would be effective to help meet the goals of the Paris Agreement.[3] As well as use by the Met Office climate modelling group[4] a number of studies have cited JULES and used it as a tool to assess the effects of climate change, and to simulate environmental factors from groundwater to carbon in the atmosphere.[5] [6] [7] [8] [9]
JULES has been described as the most accurate global carbon budget model of net ecosystem productivity, because it has more years of data than other models.[10]
External links
Notes and References
- Web site: Joint UK Land Environment Simulator (JULES). 2020-08-19. Joint UK Land Environment Simulator (JULES). en.
- Web site: Joint UK Land Environment Simulator (JULES). 2020-08-19. Met Office.
- Web site: Phelan. Matthew. Meeting Paris Agreement Global Warming Goals May Require Lots More Forests. 2020-08-15. Inverse. 7 August 2018 . en.
- Web site: Climate impacts. 2020-08-19. Met Office. en.
- Osborne. T.. Gornall. J.. Hooker. J.. Williams. K.. Wiltshire. A.. Betts. R.. Wheeler. T.. October 2014. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator. Geoscientific Model Development Discussions. 7. 5. 6773–6809. 10.5194/gmdd-7-6773-2014. 2014GMDD....7.6773O. free.
- Best. M. J.. Pryor. M.. Clark. D. B.. Rooney. G. G.. Essery. R. L. H.. Ménard. C. B.. Edwards. J. M.. Hendry. M. A.. Porson. A.. Gedney. N.. Mercado. L. M.. 2011. The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes. Geoscientific Model Development. en. 4. 3. 677–699. 10.5194/gmd-4-677-2011. 2011GMD.....4..677B. 1991-9603. free. 20.500.11820/f4a1d33b-17bd-4b8b-8b72-c511ab7a5948. free.
- Yuan. Wenping. Zheng. Yi. Piao. Shilong. Ciais. Philippe. Lombardozzi. Danica. Wang. Yingping. Ryu. Youngryel. Chen. Guixing. Dong. Wenjie. Hu. Zhongming. Jain. Atul K.. 2019-08-01. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances. en. 5. 8. eaax1396. 10.1126/sciadv.aax1396. 31453338. 6693914. 2019SciA....5.1396Y. 2375-2548.
- Yin. Yuanyuan. Tang. Qiuhong. Wang. Lixin. Liu. Xingcai. 2016-02-12. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Scientific Reports. en. 6. 1. 20905. 10.1038/srep20905. 26867481. 4751438. 2016NatSR...620905Y. 2045-2322.
- Batelis. Stamatis-Christos. Rahman. Mostaquimur. Kollet. Stefan. Woods. Ross. Rosolem. Rafael. 2020. Towards the representation of groundwater in the Joint UK Land Environment Simulator. Hydrological Processes. en. 34. 13. 2843–2863. 10.1002/hyp.13767. 2020HyPr...34.2843B. 1099-1085. free. 1983/dbebc317-eec9-4bf7-9ef7-08f8d7b28423. free.
- Nitrogen Cycling in CMIP6 Land Surface Models: Progress and Limitations. Biogeosciences (Preprint). 2020BGeo...17.5129D . Davies-Barnard . Taraka . Meyerholt . Johannes . Zaehle . Sönke . Friedlingstein . Pierre . Brovkin . Victor . Fan . Yuanchao . Fisher . Rosie A. . Jones . Chris D. . Lee . Hanna . Peano . Daniele . Smith . Benjamin . Wårlind . David . Wiltshire . Andy J. . 2020 . 17 . 20 . 5129 . 10.5194/bg-17-5129-2020 . free .