In mathematics, the Itô isometry, named after Kiyoshi Itô, is a crucial fact about Itô stochastic integrals. One of its main applications is to enable the computation of variances for random variables that are given as Itô integrals.
Let
W:[0,T] x \Omega\toR
T>0
X:[0,T] x \Omega\toR
W | |
l{F} | |
* |
\operatorname{E}\left[\left(
T | |
\int | |
0 |
XtdWt\right)2\right]=\operatorname{E}\left[
T | |
\int | |
0 |
2 | |
X | |
t |
dt\right],
where
\operatorname{E}
In other words, the Itô integral, as a function from the space
2 | |
L | |
ad |
([0,T] x \Omega)
L2(\Omega)
\begin{align} (X,Y
) | ||||||||||
|
&:=\operatorname{E}\left(
T | |
\int | |
0 |
XtYtdt\right) \end{align}
and
(A,B
) | |
L2(\Omega) |
:=\operatorname{E}(AB).
\operatorname{E}\left[\left(
T | |
\int | |
0 |
XtdWt\right)\left(
T | |
\int | |
0 |
YtdWt\right)\right]=\operatorname{E}\left[
T | |
\int | |
0 |
XtYtdt\right]
X,Y\in
2 | |
L | |
ad |
([0,T] x \Omega)
. Øksendal, Bernt K. . Bernt Øksendal . Stochastic Differential Equations: An Introduction with Applications . Springer, Berlin . 2003 . 3-540-04758-1.