Isotopes of sodium explained

There are 20 isotopes of sodium (11Na), ranging from to (except for the still-unknown 36Na and 38Na),[1] and two isomers (and). is the only stable (and the only primordial) isotope. It is considered a monoisotopic element and it has a standard atomic weight of . Sodium has two radioactive cosmogenic isotopes (with a half-life of ; and, with a half-life of). With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is the unbound, with a half-life of seconds (although the half-life of the similarly unbound 17Na is not measured).

Acute neutron radiation exposure (e.g., from a nuclear criticality accident) converts some of the stable (in the form of Na+ ion) in human blood plasma to . By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.

is a positron-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for positron emission tomography.

List of isotopes

|-| | style="text-align:right" | 11| style="text-align:right" | 6| || p| | (1/2+)||-| | style="text-align:right" | 11| style="text-align:right" | 7| | | p=?[2] | | 1−#| |-| | style="text-align:right" | 11| style="text-align:right" | 8| | > | p| | (5/2+)||-| rowspan=2|| rowspan=2 style="text-align:right" | 11| rowspan=2 style="text-align:right" | 9| rowspan=2|| rowspan=2|| β+ | | rowspan=2|2+| rowspan=2||-| β+α | |-| | style="text-align:right" | 11| style="text-align:right" | 10| | | β+| | 3/2+| |-| rowspan=2|| rowspan=2 style="text-align:right" | 11| rowspan=2 style="text-align:right" | 11| rowspan=2|| rowspan=2|| β+ | | rowspan=2|3+| rowspan=2|Trace[3] |-| ε | |-| style="text-indent:1em" | | colspan="3" style="text-indent:2em" | | | IT| | 1+||-| style="text-indent:1em" | | colspan="3" style="text-indent:2em" | | | IT| | 0+||-| | style="text-align:right" | 11| style="text-align:right" | 12| | colspan=3 align=center|Stable| 3/2+| style="text-align:center"||-| | style="text-align:right" | 11| style="text-align:right" | 13| | | β| | 4+| Trace|-| rowspan=2 style="text-indent:1em" | | rowspan=2 colspan="3" style="text-indent:2em" | | rowspan=2|| IT | | rowspan=2|1+| rowspan=2||-| β | |-| | style="text-align:right" | 11| style="text-align:right" | 14| | | β| | 5/2+||-| | style="text-align:right" | 11| style="text-align:right" | 15| | | β| | 3+||-| style="text-indent:1em" | | colspan="3" style="text-indent:2em" | | | IT| | 1+||-| rowspan=2|| rowspan=2 style="text-align:right" | 11| rowspan=2 style="text-align:right" | 16| rowspan=2| | rowspan=2| | β | | rowspan=2|5/2+| rowspan=2||-| βn | |-| rowspan=2|| rowspan=2 style="text-align:right" | 11| rowspan=2 style="text-align:right" | 17| rowspan=2|| rowspan=2|| β | | rowspan=2|1+| rowspan=2||-| βn | |-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 18| rowspan=3|| rowspan=3|| β | | rowspan=3|3/2+| rowspan=3||-| βn | |-| β2n ?[4] | ?|-| rowspan=4|| rowspan=4 style="text-align:right" | 11| rowspan=4 style="text-align:right" | 19| rowspan=4|| rowspan=4|| β | | rowspan=4|2+| rowspan=4||-| βn | |-| β2n | |-| βα | |-| rowspan=4|| rowspan=4 style="text-align:right" | 11| rowspan=4 style="text-align:right" | 20| rowspan=4|| rowspan=4|| β (>)| | rowspan=4|3/2+| rowspan=4||-| βn | |-| β2n | |-| β3n (<)| |-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 21| rowspan=3|| rowspan=3|| β | | rowspan=3|(3−)| rowspan=3||-| βn | |-| β2n | |-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 22| rowspan=3|| rowspan=3|| βn | | rowspan=3|(3/2+)| rowspan=3||-| β | |-| β2n | |-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 23| rowspan=3|| rowspan=3|| β2n (~)| | rowspan=3|1+| rowspan=3||-| β (~)| |-| βn (~)| |-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 24| rowspan=3|#| rowspan=3|| β| | rowspan=3|3/2+#| rowspan=3||-| βn ?| ?|-| β2n ?| ?|-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 26| rowspan=3|#| rowspan=3|1# ms [> {{val|1.5|u=μs}}]| β ?| ?| rowspan=3|3/2+#| rowspan=3||-| βn ?| ?|-| β2n ?| ?|-| rowspan=3|| rowspan=3 style="text-align:right" | 11| rowspan=3 style="text-align:right" | 28| rowspan=3|#| rowspan=3|1# ms [> {{val|400|u=ns}}]| β ?| ?| rowspan=3|3/2+#| rowspan=3||-| βn ?| ?|-| β2n ?| ?|-

Sodium-22

Sodium-22 is a radioactive isotope of sodium, undergoing positron emission to with a half-life of . is being investigated as an efficient generator of "cold positrons" (antimatter) to produce muons for catalyzing fusion of deuterium. It is also commonly used as a positron source in positron annihilation spectroscopy.[5]

Sodium-23

Sodium-23 is an isotope of sodium with an atomic mass of 22.98976928. It is the only stable isotope of sodium and also the only primordial isotope. Because of its abundance, sodium-23 is used in nuclear magnetic resonance in various research fields, including materials science and battery research.[6] Sodium-23 relaxation has applications in studying cation-biomolecule interactions, intracellular and extracellular sodium, ion transport in batteries, and quantum information processing.[7]

Sodium-24

Sodium-24 is radioactive and can be created from common sodium-23 by neutron activation. With a half-life of, decays to by emission of an electron and two gamma rays.[8]

Exposure of the human body to intense neutron radiation creates in the blood plasma. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.[9] This can be used to determine the type of medical treatment required.

When sodium is used as coolant in fast breeder reactors, is created, which makes the coolant radioactive. When the decays, it causes a buildup of magnesium in the coolant. Since the half-life is short, the portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,[10] as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.

Sodium has been proposed as a casing for a salted bomb, as it would convert to and produce intense gamma-ray emissions for a few days.[11] [12]

External links

Notes and References

  1. Ahn . D.S. . etal . Discovery of 39Na . . 129 . 21 . 212502 . 2022-11-14 . 212502 . 10.1103/PhysRevLett.129.212502. 36461972 . 2022PhRvL.129u2502A . 253591660 . free .
  2. Decay mode shown has been observed, but its intensity is not known experimentally.
  3. [Cosmogenic nuclide]
  4. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
  5. Saro. Matúš. Kršjak. Vladimír. Petriska. Martin. Slugeň. Vladimír. 2019-07-29. Sodium-22 source contribution determination in positron annihilation measurements using GEANT4. AIP Conference Proceedings. 2131. 1. 020039. 10.1063/1.5119492. 2019AIPC.2131b0039S . 201349680 . 0094-243X.
  6. Gotoh. Kazuma . 23Na Solid-State NMR Analyses for Na-Ion Batteries and Materials. 8 February 2021 . Batteries & Supercaps. 4 . 8 . 1267–127. 10.1002/batt.202000295 . 233827472 .
  7. Song. Yifan. Yin . Yu. Chen. Qinlong. Marchetti. Alessandro . Kong. Xueqian. 23Na relaxometry: An overview of theory and applications. Magnetic Resonance Letters. 2023 . 3. 2 . 150–174 . 10.1016/j.mrl.2023.04.001. free.
  8. Web site: sodium-24. Encyclopædia Britannica.
  9. Neutron dose assessment using samples of human blood and hair . Daniela . Ekendahl . Peter . Rubovič . Pavel . Žlebčík . Ivan . Hupka . Ondřej . Huml . Věra . Bečková . Helena . Malá . 7 November 2019 . 10.1093/rpd/ncz202. Radiation Protection Dosimetry. 186. 2–3. 202–205. 31702764 .
  10. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1180_prn.pdf Unusual occurrences during LMFR operation
  11. Time. Science: fy for Doomsday. November 24, 1961. https://web.archive.org/web/20160314102436/http://content.time.com/time/magazine/article/0,9171,828877,00.html. live. subscription. March 14, 2016.
  12. W. H. . Clark . Chemical and Thermonuclear Explosives . . 1961 . 17 . 9 . 356–360 . 10.1080/00963402.1961.11454268. 1961BuAtS..17i.356C .