Isotopes of niobium explained

Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.

Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (93Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. 95Nb is the decay product of 95Zr (64 days), so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.

List of isotopes

|-| rowspan=3|81Nb| rowspan=3 style="text-align:right" | 41| rowspan=3 style="text-align:right" | 40| rowspan=3|80.94903(161)#| rowspan=3|<44 ns| β+, p| 80Y| rowspan=3|3/2−#| rowspan=3||-| p| 80Zr|-| β+| 81Zr|-| 82Nb| style="text-align:right" | 41| style="text-align:right" | 41| 81.94313(32)#| 51(5) ms| β+| 82Zr| 0+||-| 83Nb| style="text-align:right" | 41| style="text-align:right" | 42| 82.93671(34)| 4.1(3) s| β+| 83Zr| (5/2+)||-| rowspan=2|84Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 43| rowspan=2|83.93357(32)#| rowspan=2|9.8(9) s| β+ (>99.9%)| 84Zr| rowspan=2|3+| rowspan=2||-| β+, p (<.1%)| 83Y|-| style="text-indent:1em" | 84mNb| colspan="3" style="text-indent:2em" | 338(10) keV| 103(19) ns||| (5−)||-| 85Nb| style="text-align:right" | 41| style="text-align:right" | 44| 84.92791(24)| 20.9(7) s| β+| 85Zr| (9/2+)||-| style="text-indent:1em" | 85mNb| colspan="3" style="text-indent:2em" | 759.0(10) keV| 12(5) s||| (1/2−)||-| 86Nb| style="text-align:right" | 41| style="text-align:right" | 45| 85.92504(9)| 88(1) s| β+| 86Zr| (6+)||-| style="text-indent:1em" | 86mNb| colspan="3" style="text-indent:2em" | 250(160)# keV| 56(8) s| β+| 86Zr| high||-| 87Nb| style="text-align:right" | 41| style="text-align:right" | 46| 86.92036(7)| 3.75(9) min| β+| 87Zr| (1/2−)||-| style="text-indent:1em" | 87mNb| colspan="3" style="text-indent:2em" | 3.84(14) keV| 2.6(1) min| β+| 87Zr| (9/2+)#||-| 88Nb| style="text-align:right" | 41| style="text-align:right" | 47| 87.91833(11)| 14.55(6) min| β+| 88Zr| (8+)||-| style="text-indent:1em" | 88mNb| colspan="3" style="text-indent:2em" | 40(140) keV| 7.8(1) min| β+| 88Zr| (4−)||-| 89Nb| style="text-align:right" | 41| style="text-align:right" | 48| 88.913418(29)| 2.03(7) h| β+| 89Zr| (9/2+)||-| style="text-indent:1em" | 89mNb| colspan="3" style="text-indent:2em" | 0(30)# keV| 1.10(3) h| β+| 89Zr| (1/2)−||-| 90Nb| style="text-align:right" | 41| style="text-align:right" | 49| 89.911265(5)| 14.60(5) h| β+| 90Zr| 8+||-| style="text-indent:1em" | 90m1Nb| colspan="3" style="text-indent:2em" | 122.370(22) keV| 63(2) μs||| 6+||-| style="text-indent:1em" | 90m2Nb| colspan="3" style="text-indent:2em" | 124.67(25) keV| 18.81(6) s| IT| 90Nb| 4-||-| style="text-indent:1em" | 90m3Nb| colspan="3" style="text-indent:2em" | 171.10(10) keV| <1 μs||| 7+||-| style="text-indent:1em" | 90m4Nb| colspan="3" style="text-indent:2em" | 382.01(25) keV| 6.19(8) ms||| 1+||-| style="text-indent:1em" | 90m5Nb| colspan="3" style="text-indent:2em" | 1880.21(20) keV| 472(13) ns||| (11−)||-| rowspan=2|91Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 50| rowspan=2|90.906996(4)| rowspan=2|680(130) a| EC (99.98%)| rowspan=2|91Zr| rowspan=2|9/2+| rowspan=2||-| β+ (.013%)|-| rowspan=3 style="text-indent:1em" | 91m1Nb| rowspan=3 colspan="3" style="text-indent:2em" | 104.60(5) keV| rowspan=3|60.86(22) d| IT (93%)| 91Nb| rowspan=3|1/2−| rowspan=3||-| EC (7%)| rowspan=2|91Zr|-| β+ (.0028%)|-| style="text-indent:1em" | 91m2Nb| colspan="3" style="text-indent:2em" | 2034.35(19) keV| 3.76(12) μs||| (17/2−)||-| rowspan=2|92Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 51| rowspan=2|91.907194(3)| rowspan=2|3.47(24)×107 a| β+ (99.95%)| 92Zr| rowspan=2|(7)+| rowspan=2|Trace|-| β (.05%)| 92Mo|-| style="text-indent:1em" | 92m1Nb| colspan="3" style="text-indent:2em" | 135.5(4) keV| 10.15(2) d| β+| 92Zr| (2)+||-| style="text-indent:1em" | 92m2Nb| colspan="3" style="text-indent:2em" | 225.7(4) keV| 5.9(2) μs||| (2)−||-| style="text-indent:1em" | 92m3Nb| colspan="3" style="text-indent:2em" | 2203.3(4) keV| 167(4) ns||| (11−)||-| 93Nb| style="text-align:right" | 41| style="text-align:right" | 52| 92.9063781(26)| colspan=3 align=center|Stable| 9/2+| 1.0000|-| style="text-indent:1em" | 93mNb| colspan="3" style="text-indent:2em" | 30.77(2) keV| 16.13(14) a| IT| 93Nb| 1/2−||-| 94Nb| style="text-align:right" | 41| style="text-align:right" | 53| 93.9072839(26)| 2.03(16)×104 a| β| 94Mo| (6)+| Trace|-| rowspan=2 style="text-indent:1em" | 94mNb| rowspan=2 colspan="3" style="text-indent:2em" | 40.902(12) keV| rowspan=2|6.263(4) min| IT (99.5%)| 94Nb| rowspan=2|3+| rowspan=2||-| β (.5%)| 94Mo|-| 95Nb| style="text-align:right" | 41| style="text-align:right" | 54| 94.9068358(21)| 34.991(6) d| β| 95Mo| 9/2+||-| rowspan=2 style="text-indent:1em" | 95mNb| rowspan=2 colspan="3" style="text-indent:2em" | 235.690(20) keV| rowspan=2|3.61(3) d| IT (94.4%)| 95Nb| rowspan=2|1/2−| rowspan=2||-| β (5.6%)| 95Mo|-| 96Nb| style="text-align:right" | 41| style="text-align:right" | 55| 95.908101(4)| 23.35(5) h| β| 96Mo| 6+||-| 97Nb| style="text-align:right" | 41| style="text-align:right" | 56| 96.9080986(27)| 72.1(7) min| β| 97Mo| 9/2+||-| style="text-indent:1em" | 97mNb| colspan="3" style="text-indent:2em" | 743.35(3) keV| 52.7(18) s| IT| 97Nb| 1/2−||-| 98Nb| style="text-align:right" | 41| style="text-align:right" | 57| 97.910328(6)| 2.86(6) s| β| 98Mo| 1+||-| rowspan=2 style="text-indent:1em" | 98mNb| rowspan=2 colspan="3" style="text-indent:2em" | 84(4) keV| rowspan=2|51.3(4) min| β (99.9%)| 98Mo| rowspan=2|(5+)| rowspan=2||-| IT (.1%)| 98Nb|-| 99Nb| style="text-align:right" | 41| style="text-align:right" | 58| 98.911618(14)| 15.0(2) s| β| 99Mo| 9/2+||-| rowspan=2 style="text-indent:1em" | 99mNb| rowspan=2 colspan="3" style="text-indent:2em" | 365.29(14) keV| rowspan=2|2.6(2) min| β (96.2%)| 99Mo| rowspan=2|1/2−| rowspan=2||-| IT (3.8%)| 99Nb|-| 100Nb| style="text-align:right" | 41| style="text-align:right" | 59| 99.914182(28)| 1.5(2) s| β| 100Mo| 1+||-| style="text-indent:1em" | 100mNb| colspan="3" style="text-indent:2em" | 470(40) keV| 2.99(11) s| β| 100Mo| (4+, 5+)||-| 101Nb| style="text-align:right" | 41| style="text-align:right" | 60| 100.915252(20)| 7.1(3) s| β| 101Mo| (5/2#)+||-| 102Nb| style="text-align:right" | 41| style="text-align:right" | 61| 101.91804(4)| 1.3(2) s| β| 102Mo| 1+||-| style="text-indent:1em" | 102mNb| colspan="3" style="text-indent:2em" | 130(50) keV| 4.3(4) s| β| 102Mo| high||-| 103Nb| style="text-align:right" | 41| style="text-align:right" | 62| 102.91914(7)| 1.5(2) s| β| 103Mo| (5/2+)||-| rowspan=2|104Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 63| rowspan=2|103.92246(11)| rowspan=2|4.9(3) s| β (99.94%)| 104Mo| rowspan=2|(1+)| rowspan=2||-| β, n (.06%)| 103Mo|-| rowspan=2 style="text-indent:1em" | 104mNb| rowspan=2 colspan="3" style="text-indent:2em" | 220(120) keV| rowspan=2|940(40) ms| β (99.95%)| 104Mo| rowspan=2|high| rowspan=2||-| β, n (.05%)| 103Mo|-| rowspan=2|105Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 64| rowspan=2|104.92394(11)| rowspan=2|2.95(6) s| β (98.3%)| 105Mo| rowspan=2|(5/2+)#| rowspan=2||-| β, n (1.7%)| 104Mo|-| rowspan=2|106Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 65| rowspan=2|105.92797(21)#| rowspan=2|920(40) ms| β (95.5%)| 106Mo| rowspan=2|2+#| rowspan=2||-| β, n (4.5%)| 105Mo|-| rowspan=2|107Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 66| rowspan=2|106.93031(43)#| rowspan=2|300(9) ms| β (94%)| 107Mo| rowspan=2|5/2+#| rowspan=2||-| β, n (6%)| 106Mo|-| rowspan=2|108Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 67| rowspan=2|107.93484(32)#| rowspan=2|0.193(17) s| β (93.8%)| 108Mo| rowspan=2|(2+)| rowspan=2||-| β, n (6.2%)| 107Mo|-| rowspan=2|109Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 68| rowspan=2|108.93763(54)#| rowspan=2|190(30) ms| β (69%)| 109Mo| rowspan=2|5/2+#| rowspan=2||-| β, n (31%)| 108Mo|-| rowspan=2|110Nb| rowspan=2 style="text-align:right" | 41| rowspan=2 style="text-align:right" | 69| rowspan=2|109.94244(54)#| rowspan=2|170(20) ms| β (60%)| 110Mo| rowspan=2|2+#| rowspan=2||-| β, n (40%)| 109Mo|- | 111Nb| style="text-align:right" | 41| style="text-align:right" | 70| 110.94565(54)#| 80# ms [>300&nbsp;ns]||| 5/2+#||-| 112Nb| style="text-align:right" | 41| style="text-align:right" | 71| 111.95083(75)#| 60# ms [>300&nbsp;ns]||| 2+#||-| 113Nb| style="text-align:right" | 41| style="text-align:right" | 72| 112.95470(86)#| 30# ms [>300&nbsp;ns]||| 5/2+#||-| 114Nb[1] | style="text-align:right" | 41| style="text-align:right" | 73| | ||| ||-| 115Nb[1] | style="text-align:right" | 41| style="text-align:right" | 74| | || |||-| 116Nb[2] | style="text-align:right" | 41| style="text-align:right" | 75| | ||| ||-| 117Nb[3] | style="text-align:right" | 41| style="text-align:right" | 76| | ||||

Niobium-92

Niobium-92 is an extinct radionuclide[4] with a half-life of 34.7 million years, decaying predominantly via β+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of p-nuclei.[4] [5] A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova.[6]

Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust.[7]

References

Notes and References

  1. Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon . Tetsuya . Ohnishi . Toshiyuki . Kubo . Kensuke . Kusaka . etal . 2010 . J. Phys. Soc. Jpn. . Physical Society of Japan . 79 . 7 . 073201 . 10.1143/JPSJ.79.073201. 1006.0305 . 2010JPSJ...79g3201T . free.
  2. Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns . 10.7566/JPSJ.87.014203 . Shimizu . Yohei. Journal of the Physical Society of Japan. et al . 2018. 87. 1 . 014203. 2018JPSJ...87a4203S . free.
  3. Observation of new neutron-rich isotopes in the vicinity of Zr110. 10.1103/PhysRevC.103.014614. 2021. Sumikama. T.. Fukuda. N.. Inabe. N.. Kameda. D.. Kubo. T.. Shimizu. Y.. Suzuki. H.. Takeda. H.. Yoshida. K.. Baba. H.. Browne. F.. Bruce. A. M.. Carroll. R.. Chiga. N.. Daido. R.. Didierjean. F.. Doornenbal. P.. Fang. Y.. Gey. G.. Ideguchi. E.. Isobe. T.. Lalkovski. S.. Li. Z.. Lorusso. G.. Lozeva. R.. Nishibata. H.. Nishimura. S.. Nishizuka. I.. Odahara. A.. Patel. Z.. Physical Review C. 103. 1 . 014614 . 2021PhRvC.103a4614S . 234019083. 1. 10261/260248. free.
  4. Iizuka. Tsuyoshi. Lai. Yi-Jen. Akram. Waheed. Amelin. Yuri. Schönbächler. Maria. 2016. Earth and Planetary Science Letters. 439. 172–181. The initial abundance and distribution of 92Nb in the Solar System. 10.1016/j.epsl.2016.02.005. 2016E&PSL.439..172I. 1602.00966. 119299654.
  5. THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM. Hibiya. Y. Iizuka. T. Enomoto. H. 7 September 2019. Lunar and Planetary Science Conference. 50th. 2019.
  6. 10.3847/2041-8213/acab5d . Evidence for enrichment of niobium-92 in the outer protosolar disk . Hibiya . Y. . Iizuka . T. . Enomoto . H. . Hayakawa . T. . 2023 . Astrophysical Journal Letters . 942 . L15. L15 . 2023ApJ...942L..15H . 255414098 . free .
  7. Clayton. Donald D.. Morgan. John A.. 1977. Nature. 266. 5604. 712–713. Muon production of 92,94Nb in the Earth's crust. 10.1038/266712a0. 4292459.