Isotopes of calcium explained

Calcium (Ca) has 26 known isotopes, ranging from Ca to Ca. There are five stable isotopes (Ca, Ca, Ca, Ca and Ca), plus one isotope (Ca) with such a long half-life that it is for all practical purposes stable. The most abundant isotope, Ca, as well as the rare Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has a cosmogenic isotope, Ca, with half-life 99,400 years. Unlike cosmogenic isotopes that are produced in the air, Ca is produced by neutron activation of Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still strong enough. Ca has received much attention in stellar studies because it decays to K, a critical indicator of solar system anomalies. The most stable artificial isotopes are Ca with half-life 163 days and Ca with half-life 4.5 days. All other calcium isotopes have half-lives of minutes or less.

Ca comprises about 97% of natural calcium. Ca, like Ar, is a decay product of K. While K–Ar dating has been used extensively in the geological sciences, the prevalence of Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K–Ca age dating.

List of isotopes

|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 15| rowspan=3|35.00557(22)#| rowspan=3|25.7(2) ms| β, p (95.8%)| Ar| rowspan=3|1/2+#| rowspan=3|| rowspan=3||-| β, 2p (4.2%)| Cl|-| β (rare)| K|-| rowspan=2|Ca| rowspan=2 style="text-align:right" | 20| rowspan=2 style="text-align:right" | 16| rowspan=2|35.993074(43)| rowspan=2|100.9(13) ms| β, p (51.2%)| Ar| rowspan=2|0+| rowspan=2|| rowspan=2||-| β (48.8%)| K|-| rowspan=2|Ca| rowspan=2 style="text-align:right" | 20| rowspan=2 style="text-align:right" | 17| rowspan=2|36.98589785(68)| rowspan=2|181.0(9) ms| β, p (76.8%)| Ar| rowspan=2|3/2+| rowspan=2|| rowspan=2||-| β (23.2%)| K|-| Ca| style="text-align:right" | 20| style="text-align:right" | 18| 37.97631922(21)| 443.70(25) ms| β| K| 0+|||-| Ca| style="text-align:right" | 20| style="text-align:right" | 19| 38.97071081(64)| 860.3(8) ms| β| K| 3/2+|||-| Ca[1] | style="text-align:right" | 20| style="text-align:right" | 20| 39.962590850(22)| colspan=3 align=center|Observationally stable[2] | 0+| 0.9694(16)| 0.96933–0.96947|-| Ca| style="text-align:right" | 20| style="text-align:right" | 21| 40.96227791(15)| 9.94(15)×10 y| EC| K| 7/2−| Trace[3] ||-| Ca| style="text-align:right" | 20| style="text-align:right" | 22| 41.95861778(16)| colspan=3 align=center|Stable| 0+| 0.00647(23)| 0.00646–0.00648|-| Ca| style="text-align:right" | 20| style="text-align:right" | 23| 42.95876638(24)| colspan=3 align=center|Stable| 7/2−| 0.00135(10)| 0.00135–0.00135|-| Ca| style="text-align:right" | 20| style="text-align:right" | 24| 43.95548149(35)| colspan=3 align=center|Stable| 0+| 0.0209(11)| 0.02082–0.02092|-| Ca| style="text-align:right" | 20| style="text-align:right" | 25| 44.95618627(39)| 162.61(9) d| β| Sc| 7/2−|||-| Ca| style="text-align:right" | 20| style="text-align:right" | 26| 45.9536877(24)| colspan=3 align=center|Observationally stable[4] | 0+| 4×10| 4×10–4×10|-| Ca| style="text-align:right" | 20| style="text-align:right" | 27| 46.9545411(24)| 4.536(3) d| β| Sc| 7/2−|||-| Ca[5] [6] | style="text-align:right" | 20| style="text-align:right" | 28| 47.952522654(18)| 5.6(10)×10 y|| ββ[7] | Ti| 0+| 0.00187(21)| 0.00186–0.00188|-| Ca| style="text-align:right" | 20| style="text-align:right" | 29| 48.95566263(19)| 8.718(6) min| β| Sc| 3/2−|||-| Ca| style="text-align:right" | 20| style="text-align:right" | 30| 49.9574992(17)| 13.45(5) s| β| Sc| 0+| | |-| rowspan=2|Ca| rowspan=2 style="text-align:right" | 20| rowspan=2 style="text-align:right" | 31| rowspan=2|50.96099566(56)| rowspan=2|10.0(8) s| β| Sc| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| β, n?| Sc|-| rowspan=2|Ca| rowspan=2 style="text-align:right" | 20| rowspan=2 style="text-align:right" | 32| rowspan=2|51.96321365(72)| rowspan=2|4.6(3) s| β (>98%)| Sc| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (<2%)| Sc|-| rowspan=2|Ca| rowspan=2 style="text-align:right" | 20| rowspan=2 style="text-align:right" | 33| rowspan=2|52.968451(47)| rowspan=2|461(90) ms| β (60%)| Sc| rowspan=2|1/2−#| rowspan=2|| rowspan=2||-| β, n (40%)| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 34| rowspan=3|53.972989(52)| rowspan=3|90(6) ms| β| Sc| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 35| rowspan=3|54.97998(17)| rowspan=3|22(2) ms| β| Sc| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 36| rowspan=3|55.98550(27)| rowspan=3|11(2) ms| β| Sc| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 37| rowspan=3|56.99296(43)#| rowspan=3|8# ms [>620&nbsp;ns]| β?| Sc| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 38| rowspan=3|57.99836(54)#| rowspan=3|4# ms [>620&nbsp;ns]| β?| Sc| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 39| rowspan=3|59.00624(64)#| rowspan=3|5# ms [>400&nbsp;ns]| β?| Sc| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc|-| rowspan=3|Ca| rowspan=3 style="text-align:right" | 20| rowspan=3 style="text-align:right" | 40| rowspan=3|60.01181(75)#| rowspan=3|2# ms [>400&nbsp;ns]| β?| Sc| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n?| Sc|-| β, 2n?| Sc

Calcium-48

See main article: Calcium-48.

Calcium-48 is a doubly magic nucleus with 28 neutrons; unusually neutron-rich for a light primordial nucleus. It decays via double beta decay with an extremely long half-life of about 6.4×10 years, though single beta decay is also theoretically possible.[8] This decay can analyzed with the sd nuclear shell model, and it is more energetic (4.27 MeV) than any other double beta decay.[9] It can also be used as a precursor for neutron-rich and superheavy nuclei.[10] [11]

Calcium-60

Calcium-60 is the heaviest known isotope . First observed in 2018 at Riken alongside Ca and seven isotopes of other elements,[12] its existence suggests that there are additional even-N isotopes of calcium up to at least Ca, while Ca is probably the last bound isotope with odd N.[13] Earlier predictions had estimated the neutron drip line to occur at Ca, with Ca unbound.[12]

In the neutron-rich region, N = 40 becomes a magic number, so Ca was considered early on to be a possibly doubly magic nucleus, as is observed for the Ni isotone.[14] [15] However, subsequent spectroscopic measurements of the nearby nuclides Ca, Ca, and Ti instead predict that it should lie on the island of inversion known to exist around Cr.[15] [16]

Further reading

External links

Notes and References

  1. Heaviest observationally stable nuclide with equal numbers of protons and neutrons
  2. Believed to undergo double electron capture to Ar with a half-life no less than 9.9×10 y
  3. [Cosmogenic nuclide]
  4. Believed to undergo ββ decay to Ti
  5. [Primordial nuclide|Primordial]
  6. Believed to be capable of undergoing triple beta decay with very long partial half-life
  7. Lightest nuclide known to undergo double beta decay
  8. Arnold . R. . etal . 2016 . . Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of Ca with the NEMO-3 detector . . 93 . 11 . 112008 . 10.1103/PhysRevD.93.112008. 1604.01710. 2016PhRvD..93k2008A.
  9. Balysh . A. . 1996 . Double Beta Decay of Ca . Physical Review Letters . 77 . 5186–5189 . 10.1103/PhysRevLett.77.5186 . 10062737 . 26 . 1996PhRvL..77.5186B. nucl-ex/9608001 . etal.
  10. Notani . M. . 2002 . New neutron-rich isotopes, Ne, Na and Si, produced by fragmentation of a 64A MeV Ca beam . Physics Letters B . 542 . 1–2 . 49–54 . 10.1016/S0370-2693(02)02337-7 . 2002PhLB..542...49N . etal.
  11. Oganessian . Yu. Ts. . October 2006 . Synthesis of the isotopes of elements 118 and 116 in the Cf and Cm + Ca fusion reactions . Physical Review C . 74 . 044602 . 10.1103/PhysRevC.74.044602 . 2006PhRvC..74d4602O . 4. etal. free .
  12. Tarasov . O. B. . Ahn . D. S. . Bazin . D. . Fukuda . N. . Gade . A. . Hausmann . M. . Inabe . N. . Ishikawa . S. . Iwasa . N. . Kawata . K. . Komatsubara . T. . Kubo . T. . Kusaka . K. . Morrissey . D. J. . Ohtake . M. . Otsu . H. . Portillo . M. . Sakakibara . T. . Sakurai . H. . Sato . H. . Sherrill . B. M. . Shimizu . Y. . Stolz . A. . Sumikama . T. . Suzuki . H. . Takeda . H. . Thoennessen . M. . Ueno . H. . Yanagisawa . Y. . Yoshida . K. . Discovery of Ca and Implications For the Stability of Ca . Physical Review Letters . 11 July 2018 . 121 . 2 . 10.1103/PhysRevLett.121.022501 . 3. free .
  13. Neufcourt . Léo . Cao . Yuchen . Nazarewicz . Witold . Olsen . Erik . Viens . Frederi . Neutron Drip Line in the Ca Region from Bayesian Model Averaging . Physical Review Letters . 14 February 2019 . 122 . 6 . 10.1103/PhysRevLett.122.062502 . 1901.07632 . 3.
  14. Gade . A. . Janssens . R. V. F. . Weisshaar . D. . Brown . B. A. . Lunderberg . E. . Albers . M. . Bader . V. M. . Baugher . T. . Bazin . D. . Berryman . J. S. . Campbell . C. M. . Carpenter . M. P. . Chiara . C. J. . Crawford . H. L. . Cromaz . M. . Garg . U. . Hoffman . C. R. . Kondev . F. G. . Langer . C. . Lauritsen . T. . Lee . I. Y. . Lenzi . S. M. . Matta . J. T. . Nowacki . F. . Recchia . F. . Sieja . K. . Stroberg . S. R. . Tostevin . J. A. . Williams . S. J. . Wimmer . K. . Zhu . S. . Nuclear Structure Towards N = 40 Ca: In-Beam γ -Ray Spectroscopy of Ti . Physical Review Letters . 21 March 2014 . 112 . 11 . 10.1103/PhysRevLett.112.112503 . 3. 1402.5944 .
  15. Cortés . M.L. . Rodriguez . W. . Doornenbal . P. . Obertelli . A. . Holt . J.D. . Lenzi . S.M. . Menéndez . J. . Nowacki . F. . Ogata . K. . Poves . A. . Rodríguez . T.R. . Schwenk . A. . Simonis . J. . Stroberg . S.R. . Yoshida . K. . Achouri . L. . Baba . H. . Browne . F. . Calvet . D. . Château . F. . Chen . S. . Chiga . N. . Corsi . A. . Delbart . A. . Gheller . J.-M. . Giganon . A. . Gillibert . A. . Hilaire . C. . Isobe . T. . Kobayashi . T. . Kubota . Y. . Lapoux . V. . Liu . H.N. . Motobayashi . T. . Murray . I. . Otsu . H. . Panin . V. . Paul . N. . Sakurai . H. . Sasano . M. . Steppenbeck . D. . Stuhl . L. . Sun . Y.L. . Togano . Y. . Uesaka . T. . Wimmer . K. . Yoneda . K. . Aktas . O. . Aumann . T. . Chung . L.X. . Flavigny . F. . Franchoo . S. . Gašparić . I. . Gerst . R.-B. . Gibelin . J. . Hahn . K.I. . Kim . D. . Koiwai . T. . Kondo . Y. . Koseoglou . P. . Lee . J. . Lehr . C. . Linh . B.D. . Lokotko . T. . MacCormick . M. . Moschner . K. . Nakamura . T. . Park . S.Y. . Rossi . D. . Sahin . E. . Sohler . D. . Söderström . P.-A. . Takeuchi . S. . Toernqvist . H. . Vaquero . V. . Wagner . V. . Wang . S. . Werner . V. . Xu . X. . Yamada . H. . Yan . D. . Yang . Z. . Yasuda . M. . Zanetti . L. . Shell evolution of N = 40 isotones towards Ca: First spectroscopy of Ti . Physics Letters B . January 2020 . 800 . 135071 . 10.1016/j.physletb.2019.135071 . 3. free . 1912.07887 .
  16. Chen . S. . Browne . F. . Doornenbal . P. . Lee . J. . Obertelli . A. . Tsunoda . Y. . Otsuka . T. . Chazono . Y. . Hagen . G. . Holt . J.D. . Jansen . G.R. . Ogata . K. . Shimizu . N. . Utsuno . Y. . Yoshida . K. . Achouri . N.L. . Baba . H. . Calvet . D. . Château . F. . Chiga . N. . Corsi . A. . Cortés . M.L. . Delbart . A. . Gheller . J.-M. . Giganon . A. . Gillibert . A. . Hilaire . C. . Isobe . T. . Kobayashi . T. . Kubota . Y. . Lapoux . V. . Liu . H.N. . Motobayashi . T. . Murray . I. . Otsu . H. . Panin . V. . Paul . N. . Rodriguez . W. . Sakurai . H. . Sasano . M. . Steppenbeck . D. . Stuhl . L. . Sun . Y.L. . Togano . Y. . Uesaka . T. . Wimmer . K. . Yoneda . K. . Aktas . O. . Aumann . T. . Chung . L.X. . Flavigny . F. . Franchoo . S. . Gasparic . I. . Gerst . R.-B. . Gibelin . J. . Hahn . K.I. . Kim . D. . Koiwai . T. . Kondo . Y. . Koseoglou . P. . Lehr . C. . Linh . B.D. . Lokotko . T. . MacCormick . M. . Moschner . K. . Nakamura . T. . Park . S.Y. . Rossi . D. . Sahin . E. . Söderström . P.-A. . Sohler . D. . Takeuchi . S. . Törnqvist . H. . Vaquero . V. . Wagner . V. . Wang . S. . Werner . V. . Xu . X. . Yamada . H. . Yan . D. . Yang . Z. . Yasuda . M. . Zanetti . L. . Level structures of Ca cast doubt on a doubly magic Ca . Physics Letters B . August 2023 . 843 . 138025 . 10.1016/j.physletb.2023.138025 . 3. free . 2307.07077 .