Insular dwarfism explained

Insular dwarfism, a form of phyletic dwarfism,[1] is the process and condition of large animals evolving or having a reduced body size when their population's range is limited to a small environment, primarily islands. This natural process is distinct from the intentional creation of dwarf breeds, called dwarfing. This process has occurred many times throughout evolutionary history, with examples including various species of dwarf elephants that evolved during the Pleistocene epoch, as well as more ancient examples, such as the dinosaurs Europasaurus and Magyarosaurus. This process, and other "island genetics" artifacts, can occur not only on islands, but also in other situations where an ecosystem is isolated from external resources and breeding. This can include caves, desert oases, isolated valleys and isolated mountains ("sky islands"). Insular dwarfism is one aspect of the more general "island effect" or "Foster's rule", which posits that when mainland animals colonize islands, small species tend to evolve larger bodies (island gigantism), and large species tend to evolve smaller bodies. This is itself one aspect of island syndrome, which describes the differences in morphology, ecology, physiology and behaviour of insular species compared to their continental counterparts.

Possible causes

There are several proposed explanations for the mechanism which produces such dwarfism.[2]

One is a selective process where only smaller animals trapped on the island survive, as food periodically declines to a borderline level. The smaller animals need fewer resources and smaller territories, and so are more likely to get past the break-point where population decline allows food sources to replenish enough for the survivors to flourish. Smaller size is also advantageous from a reproductive standpoint, as it entails shorter gestation periods and generation times.

In the tropics, small size should make thermoregulation easier.

Among herbivores, large size confers advantages in coping with both competitors and predators, so a reduction or absence of either would facilitate dwarfing; competition appears to be the more important factor.[2]

Among carnivores, the main factor is thought to be the size and availability of prey resources, and competition is believed to be less important.[2] In tiger snakes, insular dwarfism occurs on islands where available prey is restricted to smaller sizes than are normally taken by mainland snakes. Since prey size preference in snakes is generally proportional to body size, small snakes may be better adapted to take small prey.

Dwarfism vs. gigantism

The inverse process, wherein small animals breeding on isolated islands lacking the predators of large land masses may become much larger than normal, is called island gigantism. An excellent example is the dodo, the ancestors of which were normal-sized pigeons. There are also several species of giant rats, one still extant, that coexisted with both Homo floresiensis and the dwarf stegodonts on Flores.

The process of insular dwarfing can occur relatively rapidly by evolutionary standards. This is in contrast to increases in maximum body size, which are much more gradual. When normalized to generation length, the maximum rate of body mass decrease during insular dwarfing was found to be over 30 times greater than the maximum rate of body mass increase for a ten-fold change in mammals.[3] The disparity is thought to reflect the fact that pedomorphism offers a relatively easy route to evolve smaller adult body size; on the other hand, the evolution of larger maximum body size is likely to be interrupted by the emergence of a series of constraints that must be overcome by evolutionary innovations before the process can continue.[3]

Factors influencing the extent of dwarfing

For both herbivores and carnivores, island size, the degree of island isolation and the size of the ancestral continental species appear not to be of major direct importance to the degree of dwarfing.[2] However, when considering only the body masses of recent top herbivores and carnivores, and including data from both continental and island land masses, the body masses of the largest species in a land mass were found to scale to the size of the land mass, with slopes of about 0.5 log(body mass/kg) per log(land area/km2).[4] There were separate regression lines for endothermic top predators, ectothermic top predators, endothermic top herbivores and (on the basis of limited data) ectothermic top herbivores, such that food intake was 7- to 24-fold higher for top herbivores than for top predators, and about the same for endotherms and ectotherms of the same trophic level (this leads to ectotherms being 5 to 16 times heavier than corresponding endotherms).[4]

It has been suggested that for dwarf elephants, competition was an important factor in body size, with islands with competing herbivores having significantly larger dwarf elephants than those where competing herbivores were absent.[5]

Examples

Non-avian dinosaurs

Recognition that insular dwarfism could apply to dinosaurs arose through the work of Ferenc Nopcsa, a Hungarian-born aristocrat, adventurer, scholar, and paleontologist. Nopcsa studied Transylvanian dinosaurs intensively, noticing that they were smaller than their cousins elsewhere in the world. For example, he unearthed six-meter-long sauropods, a group of dinosaurs which elsewhere commonly grew to 30 meters or more. Nopcsa deduced that the area where the remains were found was an island, Hațeg Island (now the Haţeg or Hatzeg basin in Romania) during the Mesozoic era.[6] [7] Nopcsa's proposal of dinosaur dwarfism on Hațeg Island is today widely accepted after further research confirmed that the remains found are not from juveniles.[8]

Sauropods

ExampleSpeciesRangeTime frameContinental relative

Ampelosaurus
A. atacis Ibero-Armorican Island
Nemegtosaurids

Europasaurus
E. holgeri
Brachiosaurs

Magyarosaurus
M. dacus Late Cretaceous / Maastrichtian
Rapetosaurus

Lirainosaurus[9]
L. astibiae Ibero-Armorican Island Late Cretaceous

Paludititan
P. nalatzensis Late Cretaceous / Maastrichtian
Epachthosaurus

Other

ExampleSpeciesRangeTime frameContinental relative

Langenberg Quarry
torvosaur (blue)
Unnamed
Torvosaurus

Struthiosaurus[10]
S. austriacus

S. transylvanicus

S. languedocensis
Ibero-Armorican, Australoalpine, and Hateg islands Late Cretaceous
Edmontonia

Telmatosaurus
T. transsylvanicus Late Cretaceous
Hadrosaurids

Thecodontosaurus
T. antiquus
Plateosaurs

Zalmoxes (purple)
Z. robustus

Z. shqiperorum
Late Cretaceous
Tenontosaurus

In addition, the genus Balaur was initially described as a Velociraptor-sized dromaeosaurid (and in consequence a dubious example of insular dwarfism), but has been since reclassified as a secondarily flightless stem bird, closer to modern birds than Jeholornis (thus actually an example of insular gigantism).

Birds

ExampleBinomial nameNative rangeStatusContinental relativeInsular / mainland
length or mass ratio

Hawaiian flightless ibises
Apteribis glenos Extinct (Late Quaternary)
Apteribis brevis
Cozumel curassow Crax rubra griscomi Unknown

Kangaroo Island emu[11]
Dromaius novaehollandiae baudinianus Kangaroo Island, South Australia Extinct (c. AD 1827)

King Island emu[12] (black)
Dromaius novaehollandiae minor King Island, Tasmania Extinct (AD 1822) LR ≈ 0.48
Dwarf yellow eyed penguin[13] Megadyptes antipodes richdalei Chatham Islands, New Zealand Extinct (after 1300 AD)
Toxostoma gluttatum Critically endangered
ExampleBinomial nameNative rangeStatusContinental relativeInsular / mainland
length or mass ratio
Brookesia minima Nosy Be island, Madagascar Endangered
Madagascar leaf chameleons

Nosy Hara chameleon[14]
Brookesia micra Nosy Hara island, Madagascar Vulnerable
Roxby Island tiger snake[15] access-date = 2011-11-12-->Notechis scutatus Unknown
Python bivittatus progschai Java, Bali, Sumbawa and Sulawesi, Indonesia Unknown LR ≈ 0.44
Tanahjampea reticulated python[16] Python reticulatus jampeanus Tanahjampea, between Sulawesi and Flores Unknown LR ≈ 0.41, males
LR ≈ 0.49, females

Mammals

ExampleBinomial nameNative rangeStatusContinental relative
Bradypus pygmaeus Isla Escudo de Veraguas, Panama Critically endangered
Brown-throated sloth

Acratocnus
A. antillensis

A. odontrigonus

A. ye
Cuba, Hispaniola and Puerto RicoExtinct (c. 3000 BC)
Continental ground sloths
Imagocnus I. zazae CubaExtinct (Early Miocene)

Megalocnus
M. rodens

M. zile
Extinct (c. 2700 BC)

Neocnus
Neocnus spp. Extinct (c. 3000 BC)

Proboscideans

See main article: article and Dwarf elephant.

ExampleBinomial nameNative rangeStatusContinental relative
Elephas celebensis Extinct (Early Pleistocene)
Asian elephant

Cabarruyan dwarf elephant
Elephas beyeri Extinct
Mammuthus creticus Extinct
Mammuthus
Mammuthus exilis Santa Rosae island Extinct (Late Pleistocene)
Columbian mammoth
Mammuthus lamarmorai Extinct (Late Pleistocene)
Steppe mammoth
Saint Paul Island woolly mammoth[17] [18] Mammuthus primigenius Saint Paul Island, Alaska Extinct (c. 3750 BC)
Woolly mammoth

Siculo-Maltese elephants
Palaeoloxodon antiquus leonardi

P. mnaidriensis

P. melitensis

P. falconeri
Extinct
Straight-tusked elephant
(left)
Cretan elephants Palaeoloxodon chaniensis

P. creutzburgi
Extinct
Palaeoloxodon cypriotes Extinct (c. 9000 BC)
Naxos dwarf elephant Palaeoloxodon sp. Extinct
Rhodes and Tilos dwarf elephant Palaeoloxodon tiliensis Extinct
Bumiayu dwarf sinomastodont Sinomastodon bumiajuensis Bumiayu Island (now part of Java) Extinct (Early Pleistocene)
Sinomastodon

Japanese stegodont[19] [20]
Stegodon miensis

Stegodon protoaurorae

Stegodon aurorae
Japan (Also Taiwan for S. aurorae)[21] Extinct (Early Pleistocene)
Chinese Stegodon
Greater Flores dwarf stegodont[22] Stegodon florensis Extinct (Late Pleistocene)
Sundaland Stegodon
Javan dwarf stegodonts Stegodon hypsilophus[23]

S. semedoensis[24]

S. sp.
Extinct (Quaternary)
Mindanao pygmy stegodont[25] Stegodon mindanensis Extinct (Middle Pleistocene)
Sulawesi dwarf stegodont Stegodon sompoensis Extinct
Lesser Flores dwarf stegodont Stegodon sondaari Extinct (Middle Pleistocene)
Sumba dwarf stegodont[26] Stegodon sumbaensis Sumba, Indonesia Extinct (Middle Pleistocene)
Timor dwarf stegodont Stegodon timorensis Extinct
Dwarf stegolophodont[27] Stegolophodon pseudolatidens Extinct (Miocene)
Stegolophodon
ExampleBinomial nameNative rangeStatusContinental relative
Nosy Hara dwarf lemur[28] Cheirogaleus sp. Nosy Hara island off Madagascar Unknown
Dwarf lemurs

Flores Man[29]
Homo floresiensis Extinct (Late Pleistocene)
Homo erectus
Homo luzonensis[30] [31] Luzon, Philippines Extinct (Late Pleistocene)
Modern pygmies of Flores[32] Homo sapiens Extant other members of Homo sapiens
Early Palau modern humans (disputed)[33] Homo sapiens Extinct (?)
Andamanese[34] Homo sapiens Extant

Sardinian macaque[35]
Macaca majori Extinct (Pleistocene)
Barbary macaque
Piliocolobus kirkii Endangered
Udzungwa red colobus
ExampleBinomial nameNative rangeStatusContinental relativeInsular / mainland
length or mass ratio
Canis lupus cristaldii Extinct (AD 1970)
Canis lupus hodophilax Japan (excluding Hokkaido) Extinct (AD 1905)

Sardinian dhole
(forward)
Cynotherium sardous Extinct (c. 8300 BC)
Xenocyon
Mececyon trinilensis Extinct (Pleistocene)
Cozumel Island coati[36] Nasua narica nelsoni Critically endangered
Panthera pardus pardus Critically endangered or Extinct
Panthera tigris sondaica Extinct (c. AD 1940)
Sumatran tiger
Extinct (c. AD 1975)
Procyon pygmaeus Critically endangered
Urocyon littoralis Near Threatened LR ≈ 0.84
LR ≈ 0.75
Urocyon sp. Critically endangered or Extinct

Non-ruminant ungulates

ExampleBinomial nameNative rangeStatusContinental relative

Eumaiochoerus
Eumaiochoerus etruscusExtinct (Miocene)
Microstonyx

Malagasy dwarf hippopotamuses
Hippopotamus laloumena

H. lemerlei

H. madagascariensis
Extinct (c. AD 1000)
Common hippopotamus
Bumiayu dwarf hippopotamus Hexaprotodon simplex Bumiayu Island (now Java) Extinct (Early Pleistocene)
Asian hippopotamuses
Hippopotamus creutzburgi Extinct (Middle Pleistocene)
European hippopotamus
Hippopotamus melitensis Extinct (Pleistocene)
Hippopotamus minor Extinct (c. 8000 BC)
Hippopotamus pentlandi Extinct (Pleistocene)
Cozumel collared peccary Pecari tajacu nanus Unknown
Collared peccary
Philippine rhinoceros[37] Nesorhinus philippinensis Extinct (Middle Pleistocene)
Javan rhinoceros

Bovids

ExampleBinomial nameNative rangeStatusContinental relative
Sicilian bison Bison priscus siciliae Extinct (Late Pleistocene)
Steppe bison
Sicilian aurochs[38] Bos primigenius siciliae Extinct (Late Pleistocene)
Eurasian aurochs
Bubalus cebuensis Cebu, Philippines Extinct
Wild water buffalo
Bubalus depressicornis Sulawesi and Buton, Indonesia Endangered
Bubalus grovesi Bubalus grovesi Sulawesi, Indonesia Extinct
Bubalus mindorensis Mindoro, Philippines Critically endangered
Bubalus quarlesi Sulawesi and Buton, Indonesia Endangered
Myotragus balearicus Extinct (after 3000 BC) Gallogoral
Nesogoral[39] Nesogoral spp. Extinct
Dahlak Kebir gazelle[40] Nanger soemmerringi ssp. Dahlak Kebir island, Eritrea Vulnerable
Soemmerring's gazelle

Tyrrhenotragus
Tyrrhenotragus gracillimus Extinct Antilopinae sp.

Cervids and relatives

ExampleBinomial nameNative rangeStatusContinental relative

Cretan deer
Candiacervus spp. Extinct (Pleistocene) Unknown

Sardinian deer
Praemegaceros cazioti Extinct (c. 5500 BC)Praemegaceros

Ryukyu dwarf deer[41]
Cervus astylodon Extinct
Sika deer (?)

Cervus praenipponicus (?)
Jersey red deer population[42] Cervus elaphus jerseyensis Extinct (Pleistocene)
Red deer
Cervus elaphus corsicanus Near Threatened
Sicilian red deer Cervus siciliae Extinct (Late Pleistocene)

Hoplitomeryx
Hoplitomeryx spp. Extinct (Early Pliocene)
Pecorans
Sicilian fallow deer Dama carburangelensis Extinct (Late Pleistocene) Fallow deer
Odocoileus virginianus clavium Endangered
Virginia deer
Rangifer tarandus platyrhynchus Vulnerable
Reindeer
Rusa marianna Vulnerable
Sambar deer

Plants

See also

External links

Notes and References

  1. Prothero . Donald Ross . Donald Prothero . Sereno . Paul Callistus . Paul Sereno . Winter 1982 . Allometry and Paleoecology of Medial Miocene Dwarf Rhinoceroses from the Texas Gulf Coastal Plain . . 8 . 1 . 16–30 . 10.1017/S0094837300004322 . 2400564 . 1982Pbio....8...16P . 88464305.
  2. Raia . Pasquale . Meiri . Shai . August 2006 . The island rule in large mammals: paleontology meets ecology . . 60 . 8 . 1731–1742 . 10.1111/j.0014-3820.2006.tb00516.x . 17017072 . 26853128.
  3. Evans . A. R. . The maximum rate of mammal evolution . . 109 . 11. 4187–4190 . 2012-01-30 . 10.1073/pnas.1120774109 . 22308461 . etal. 3306709. 2012PNAS..109.4187E . free .
  4. Burness . G. P. . Diamond . J. . Jared Diamond . Flannery . T. . Tim Flannery . Dinosaurs, dragons, and dwarfs: The evolution of maximal body size . . 98 . 25 . 14518–14523 . 2001-12-04 . 10.1073/pnas.251548698 . 3057309 . 0027-8424 . 11724953 . 64714 . 2001PNAS...9814518B . free .
  5. van der Geer . Alexandra A. E. . van den Bergh . Gerrit D. . Lyras . George A. . Prasetyo . Unggul W. . Due . Rokus Awe . Setiyabudi . Erick . Drinia . Hara . August 2016 . The effect of area and isolation on insular dwarf proboscideans . Journal of Biogeography . en . 43 . 8 . 1656–1666 . 10.1111/jbi.12743 . 0305-0270.
  6. Web site: Dwarf dinosaur island really did exist, scientists claim . . 2010-02-22 . https://web.archive.org/web/20100225003941/http://www.telegraph.co.uk/science/dinosaurs/7291186/Dwarf-dinosaur-island-really-did-exist-scientists-claim.html . dead . 2010-02-25 . 2010-02-26.
  7. Benton. M. J.. Csiki. Z.. Grigorescu. D.. Redelstorff. R.. Sander. P. M.. Stein. K.. Weishampel. D. B.. Dinosaurs and the island rule: The dwarfed dinosaurs from Haţeg Island. Palaeogeography, Palaeoclimatology, Palaeoecology. 293. 3–4. 438–454. 2010-01-28. 10.1016/j.palaeo.2010.01.026. 2017-07-30. dead. https://web.archive.org/web/20110710130307/http://www.dinochecker.com/papers/dwarf_%20dinos_of_hateg_island_BENTON_et_al_2010.pdf. 2011-07-10. 2010PPP...293..438B.
  8. 10.1038/scientificamerican1011-80. 22106812. The Dinosaur Baron of Transylvania. Scientific American. 305. 4. 80–83. 2011-09-20. Dyke . G. . Gareth J. Dyke. 2011SciAm.305c..80D.
  9. Company. J.. Bone histology of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the Latest Cretaceous of Spain. Naturwissenschaften . 98. 1. 2010. 67–78. 10.1007/s00114-010-0742-3. 21120450. 10251/148874. 31752413. free.
  10. Carpenter, K. (2001) The Armored Dinosaurs. Indiana University Press, 526 pages.
  11. Parker S (1984) The extinct Kangaroo Island Emu, a hitherto-unrecognised species. Bulletin of the British Ornithologists' Club 104: 19–22.
  12. Heupink, T. H. . Huynen, L. . Lambert, D. M. . 2011. Ancient DNA Suggests Dwarf and 'Giant' Emu Are Conspecific. PLoS ONE. 6. 4 . e18728. 10.1371/journal.pone.0018728. 21494561. 3073985. 2011PLoSO...618728H . free .
  13. Cole, Theresa L., et al. "Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation." Molecular biology and evolution 36.4 (2019): 784-797.
  14. Glaw . F. . Köhler, J. . Townsend, T. M. . Vences, M. . Rivaling the World's Smallest Reptiles: Discovery of Miniaturized and Microendemic New Species of Leaf Chameleons (Brookesia) from Northern Madagascar . . 7 . 2 . e31314 . 2012-02-14 . 10.1371/journal.pone.0031314 . 22348069 . 3279364. 2012PLoSO...731314G . free .
  15. Keogh. J. S.. Scott, I. A. W.. Hayes, C.. January 2005. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution. 59. 1. 226–233. 10.1111/j.0014-3820.2005.tb00909.x. 15792242. 58524. free.
  16. Auliya . M. . Mausfeld, P. . Schmitz, A. . Böhme, W. . Review of the reticulated python (Python reticulatus Schneider, 1801) with the description of new subspecies from Indonesia . . 89 . 5 . 201–213 . 2002-04-09 . 10.1007/s00114-002-0320-4 . 12135085 . 2002NW.....89..201A . 4368895 .
  17. Schirber, Michael. Surviving Extinction: Where Woolly Mammoths Endured. Live Science. Imaginova Corporation. Retrieved 2007-07-20.
  18. The mammoths of Wrangel Island, north of Siberia, are no longer considered dwarfs. See: Tikhonov, Alexei; Larry Agenbroad; Sergey Vartanyan (2003). Comparative analysis of the mammoth populations on Wrangel Island and the Channel Islands. DEINSEA 9: 415–420. ISSN 0923-9308
  19. Sondaar . P. Y. . A.A.E. van der Geer . Evolution and Extinction of Plio-Pleistocene Island Ungulates . International Journal of the French Quaternary Association . 2 . 241–256 . 2005 . en . 2017-07-31.
  20. Aiba . Hiroaki . Baba . Katsuyoshi . Matsukawa . Masaki . 2010-03-10 . A new species of Stegodon (Mammalia, Proboscidea) from the Kazusa Group (lower Pleistocene), Hachioji City, Tokyo, Japan and its evolutionary morphodynamics: STEGODON PROTOAURORAE SP. NOV. AND MORPHODYNAMICS . Palaeontology . en . 53 . 3 . 471–490 . 10.1111/j.1475-4983.2010.00953.x. 128161878 .
  21. van den Bergh . Gert D. . de Vos . John . Sondaar . Paul Y. . The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago . Palaeogeography, Palaeoclimatology, Palaeoecology . 25 September 2000 . 171 . 3–4 . 385–408 . 10.1016/S0031-0182(01)00255-3 .
  22. Van Den Bergh . Gerrit Dirk . Awe . Rokhus Due . Morwood . Michael John . Mike Morwood . Sutikna . Thomas . Jatmiko . Wahyu Saptomo, E. . May 2008 . The youngest Stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia . . 182 . 1 . 16–48 . 2008QuInt.182...16V . 10.1016/j.quaint.2007.02.001.
  23. Aziz . F. . van den Bergh, G. D. . A dwarf Stegodon from Sambungmacan (Central Java, Indonesia) . Proc. Kon. Ned. Akad. V. Wetensch. . 98 . 3 . 229–241 . September 25, 1995 . en . 2017-07-31.
  24. Siswanto, S., & Noerwidi, S. (2014). PROBOSCIDEA FOSSIL FROM SEMEDO SITE: Its Correlation With Biostratigraphy and Human Arrival in Java. Berkala Arkeologi, 34(2).
  25. Book: Fleagle. J. G. Shea. J. J. . Grine. F. E.. Baden. A. L.. Leakey. R. E.. Out of Africa I: The First Hominin Colonization of Eurasia. Geological Evidence for the Earliest Appearance of Hominins in Indonesia. https://books.google.com/books?id=CO5zfl460CEC&pg=PA106. Zaim. Y.. 20 August 2010. Springer Science & Business Media. 978-90-481-9036-2. 668096676. 106.
  26. Web site: Setiyabudi . Erick . Kurniawan . Iwan . Van Den Bergh . Gerrit . Fossils of Stegodon and Varanus komodoensis Sumba and Flores: a Pleistocene landbridge . Faculty of Science, Medicine and Health.
  27. Saegusa. H.. Dwarf Stegolophodon from the Miocene of Japan: Passengers on sinking boats . Quaternary International . 182. 1. 2008. 49–62. 10.1016/j.quaint.2007.08.001. 2008QuInt.182...49S.
  28. Web site: New group of dwarf lemurs may be world's rarest primate.
  29. http://www.abc.net.au/science/articles/2004/12/17/1266916.htm Scientist to study Hobbit morphing
  30. Wade. L.. New species of ancient human unearthed in the Philippines. Science. 364. 2019-04-10. 10.1126/science.aax6501. 189045520.
  31. Détroit. F.. Mijares. A. S.. Corny. J.. Daver. G.. Zanolli. C.. Dizon. E.. Robles. E.. Grün. R.. Piper. P. J.. A new species of Homo from the Late Pleistocene of the Philippines. Nature. 568. 7751. 2019. 181–186. 10.1038/s41586-019-1067-9. 30971845. 2019Natur.568..181D. 106411053.
  32. Tucci, S.. etal. Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. 10.1126/science.aar8486. 30072539. Science. 361. 6401. 511–516. 2018-08-03. 6709593. 2018Sci...361..511T.
  33. "Ancient Small People on Palau Not Dwarfs, Study Says". National Geographic News. August 27, 2008.
  34. Mondal. M.. Casals. F.. Xu. T.. Dall'Olio. G. M.. Pybus. M.. Netea. M. G.. Comas. D.. Laayouni. H.. Li. Q.. Majumder. P. P.. Bertranpetit. J.. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nature Genetics. 48. 9. 2016. 1066–1070. 10.1038/ng.3621. 27455350. 10230/34401. 205352099. free.
  35. Rook, L.. The first workshop on European fossil primate record (Siena and Grosseto, September 11-13, 2008) with an update on Italian studies in Paleoprimatology. Atti Muss. Stor. Nat. Maremma. 22. 129–143. 2008-12-31.
  36. Cuarón. A. D.. Martínez-Morales. M. A.. McFadden. K. W.. Valenzuela. D.. Gompper. M. E.. The status of dwarf carnivores on Cozumel Island, Mexico . Biodiversity and Conservation. 13. 2. 317–331. 2004. 10.1023/b:bioc.0000006501.80472.cc. 2004BiCon..13..317C . 10.1.1.511.2040. 25730672.
  37. Book: Renema, Willem. Biogeography, Time and Place: Distributions, Barriers and Islands. 2007. Springer Science & Business Media. 978-1-4020-6374-9. 228153573. 334.
  38. Book: van Vuure, Cis . Retracing the Aurochs: History, Morphology and Ecology of an Extinct Wild Ox. 2005. Coronet Books Incorporated. 978-954-642-235-4. 472741798.
  39. Book: van der Geer. A.. Lyras. G. de Vos. J.. Dermitzakis. M.. Evolution of Island Mammals: Adaptation and Extinction of Placental Mammals on Islands. Sardinia and Corsica. https://books.google.com/books?id=JmSsNuwMAxgC&q=Chapter+Nine+Sardinia. 14 February 2011. John Wiley & Sons. 978-1-4443-9128-2. 894698082.
  40. 10.1111/bij.12239. Just another island dwarf? Phenotypic distinctiveness in the poorly known Soemmerring's Gazelle, Nanger soemmerringii (Cetartiodactyla: Bovidae), of Dahlak Kebir Island. Biological Journal of the Linnean Society. 111. 3. 603–620. 2014. Chiozzi . G. . Bardelli . G. . Ricci . M. . De Marchi . G. . Cardini . A. . free .
  41. Book: Kaifu. Y.. Izuho. M. . Goebel. T.. Sato. H.. Ono. A.. Emergence and Diversity of Modern Human Behavior in Paleolithic Asia. Pleistocene Seafaring and Colonization of the Ryukyu Islands, Southwestern Japan. https://books.google.com/books?id=AsgbBgAAQBAJ&q=Cervus+astylodon. Kaifu. Y.. Fujita. M.. Yoneda. M.. Yamasaki. S.. 15 February 2015. Texas A&M University Press. 978-1-62349-277-9. 985023261.
  42. Lister . A. M. . Rapid dwarfing of red deer on Jersey in the Last Interglacial . . 342 . 6249. 539–542 . 1989-11-30 . 10.1038/342539a0 . 2685610 . 1989Natur.342..539L . 4343091 .
  43. Wilder. B.T.. Felger. R.S.. Dwarf Giants, Guano, and Isolation: Vegetation and Floristic Diversity of San Pedro Mártir Island, Gulf of California, Mexico. Proceedings of the San Diego Society of Natural History . 42. 1–24; see pp. 9–13. 30 September 2010. 2020-01-05 . (p. 12) The dwarfing of the San Pedro Mártir plants seems to be due to a selection for shorter individuals to survive fierce tropical storms, possible root competition in such a dense forest, and the undefined effect of high levels of nitrogen and phosphorus from the abundant guano that might stunt growth. Genetic studies have not been undertaken....
  44. Book: Burns, K.C. . Evolution in Isolation: The Search for an Island Syndrome in Plants . . May 2019. 174–177 . 10.1017/9781108379953 . 978-1108379953 . 186536407 . 1108160200 . (pp. 174-175) ... the extent to which its dwarfed stature is genetically determined, and an explanation for why insular dwarfism might be selectively advantageous, awaits additional study..