Isabelle Guyon | |
Birth Place: | Paris, France |
Birth Date: | 1961 8, df=yes |
Citizenship: | French Swiss American |
Fields: | Machine Learning |
Pronounce: | pronounced as /fr/ |
Workplaces: | Bell Labs University of Paris-Saclay |
Alma Mater: | ESPCI Paris (MSc) Pierre and Marie Curie University (PhD) |
Thesis Title: | Réseaux de neurones pour la reconnaissance des formes : architectures et apprentissage (neural networks for pattern recognition) |
Thesis Year: | 1988 |
Doctoral Advisor: | Gerard Dreyfus |
Known For: | Support Vector Machines Siamese neural network |
Awards: | BBVA Foundation Frontiers of Knowledge Awards (2020) AMIA Fellow (2011) |
Isabelle Guyon (pronounced as /fr/; born August 15, 1961) is a French-born researcher in machine learning known for her work on support-vector machines, artificial neural networks and bioinformatics.[1] She is a Chair Professor at the University of Paris-Saclay.[2] Guyon serves as the Director, Research Scientist at Google Research since October 2022.[3]
She is considered to be a pioneer in the field, with her contribution to the support-vector machines with Vladimir Vapnik and Bernhard Boser.[4] [5]
After graduating from the French engineering school ESPCI Paris in 1985,[6] she joined the group of Gerard Dreyfus at the Université Pierre-et-Marie-Curie to do a PhD on neural networks architectures and training.[7] [8]
Guyon defended her thesis in 1988 and was hired the year after at AT&T Bell Laboratories, first as a post-doc, then as a group leader. She worked at Bell Labs for six years, where she explored several research areas, from neural networks to pattern recognition and computational learning theory, with application to handwriting recognition.[9] She collaborated with Yann LeCun, Léon Bottou, Vladimir Vapnik, Corinna Cortes, Yoshua Bengio, Patrice Simard, and met her future husband, Bernhard Boser.
In 1996, Guyon left Bell Labs and raised her children at Berkeley, California. In Berkeley, she created her own machine learning consulting company, Clopinet.[10] She became interested in medical applications, and used her previous work to classify the genes responsible for different types of cancers.[11]
Since 2003, Guyon has organized many challenges in data science, in order to stimulate research in this field.[12] She founded ChaLearn in 2011, a non-profit organization aimed at creating machine learning challenges open to everyone. She was Program Chair of NeurIPS 2016[13] and became General Chair of NeurIPS in 2017.[14] She is also Action Editor for the Journal of Machine Learning Research[15] and Series Editor for Series: Challenges in Machine Learning.[16] She is a member of the European Laboratory for Learning and Intelligent Systems.[17]
In 2016, Guyon came back to France to take the Chair Professorship in Big data between the University of Paris-Saclay and INRIA. She works in TAU (TAckling the Underspecified), a research collaboration of the Laboratoire de recherche en informatique.[18]
Together ith Bernhard Schölkopf and Vladimir Vapnik, she received in 2020 the BBVA Foundation Frontiers of Knowledge Awards for her work in machine learning.
Guyon has worked in many subfields of machine learning, including neural networks, support-vector machines, feature selection and applications of machine learning to biology.
Among her most notable contributions, Guyon co-invented support-vector machines (SVM) in 1992, with Bernhard Boser and Vladimir Vapnik.[19] SVM is a supervised machine learning algorithm, comparable to neural networks or decision trees, which has quickly become a classical technique in machine learning. SVMs have especially contributed to the popularization of kernel methods.
During her years at Bell Labs, Guyon took part of numerous projects involving neural networks. In particular, she wrote some of the first papers on the use of neural network for handwriting recognition using the MNIST database.[20] She is also a co-inventor of the siamese neural networks, a neural network architecture used to learn similarities, with applications to signature, face or object recognition.
Guyon is the author of many publications at the intersection of biology (cancer research and genomics) and artificial intelligence. She has notably introduced the use of support-vector machines to detect cancer using genes.[21]
Through her non-profit organization ChaLearn, Guyon has organized and directed challenges open to everyone in order to solve open problems in machine learning, including computer vision,[22] neurosciences,[23] particle physics,[24] feature selection,[25] causality[26] and automated machine learning.[27] Most of the challenges organized by ChaLearn have resulted in publications. Among the most cited ones are:
She is married to Bernhard Boser, a professor at UC Berkeley.[28] She has twins and one daughter, all three of whom have completed a science degree.[29] Guyon has three citizenships: French by birth, Swiss by marriage and American by naturalization.