Iridium compounds explained
Oxidation states |
---|
−3 | |
−1 | |
0 | |
+1 | |
+2 | |
+3 | |
+4 | |
+5 | |
+6 | |
+7 | |
+8 | |
+9 | [1] | |
Iridium compounds are compounds containing the element iridium (Ir). Iridium forms compounds in oxidation states between −3 and +9, but the most common oxidation states are +1, +2, +3, and +4. Well-characterized compounds containing iridium in the +6 oxidation state include and the oxides and .[2] [3] iridium(VIII) oxide was generated under matrix isolation conditions at 6 K in argon.[4] The highest oxidation state (+9), which is also the highest recorded for any element, is found in gaseous .[1]
Oxides
Only one binary oxide is well-characterized: Iridium dioxide, . It is a blue-black solid. The compound adopts the TiO2 rutile structure, featuring six coordinate iridium and three coordinate oxygen. It adopts the fluorite structure.[2] A sesquioxide,, has been described as a blue-black powder, which is oxidized to by .[5] The corresponding disulfides, diselenides, sesquisulfides, and sesquiselenides are known, as well as .[2]
Another oxide, iridium tetroxide, is also known, with iridium in the +8 oxiation state.[6] This compound was formed by photochemical rearrangement of (η1-O2)IrO2 in solid argon at a temperature of 6K. At higher temperatures, the oxide is unstable.[7] The detection of the iridium tetroxide cation by infrared photodissociation spectroscopy with formal oxidation state +9 has been reported, the highest currently known of any element, though the +10 oxidation state has been theorized for platinum, but not confirmed.[8] [9]
Halides
Binary trihalides, are known for all of the halogens.[2] For oxidation states +4 and above, only the tetrafluoride, pentafluoride and hexafluoride are known.[2] Iridium hexafluoride,, is a volatile yellow solid, composed of octahedral molecules. It decomposes in water and is reduced to,.[2] Iridium pentafluoride is also a strong oxidant, but it is a tetramer,, formed by four corner-sharing octahedra.[2]
Complexes
The coordination complexes of iridium are extensive.
Iridium in its complexes is always low-spin. Ir(III) and Ir(IV) generally form octahedral complexes.[2] Polyhydride complexes are known for the +5 and +3 oxidation states.[10] One example is .[11] The ternary hydride is believed to contain both the and the 18-electron anion.[12]
Iridium also oxyanions with oxidation states +4 and +5. and can be prepared from the reaction of potassium oxide or potassium superoxide with iridium at high temperatures. Such solids are not soluble in conventional solvents.[13]
As for many elements, the chlorides are key complexes. Hexachloroiridic(IV) acid,, and its ammonium salt are the most common iridium compounds from an industrial and preparative perspectives. They are intermediates in the purification of iridium and used as precursors for most other iridium compounds, as well as in the preparation of anode coatings. The ion has an intense dark brown color, and can be readily reduced to the lighter-colored and vice versa.[14] Iridium trichloride,, which can be obtained in anhydrous form from direct oxidation of iridium powder by chlorine at 650 °C,[14] or in hydrated form by dissolving in hydrochloric acid, is often used as a starting material for the synthesis of other Ir(III) compounds.[2] Another compound used as a starting material is ammonium hexachloroiridate(III), .
In the presence of air, iridium metal dissolves in molten alkali-metal cyanides to produce the (hexacyanoiridate) ion.
Oxyanions
See also: Lithium iridate.
Iridium forms oxyanions in the +4 oxidation state. It forms compounds such as lithium iridate (Li2IrO3), which forms black crystals with three slightly different layered atomic structures, α, β, and sometimes γ. Lithium iridate exhibits metal-like, temperature-independent electrical conductivity,[15] and changes its magnetic ordering from paramagnetic to antiferromagnetic upon cooling to 15 K.[16] Lithium iridate is a potential electrode material for the lithium-ion battery.[15] This application is hindered by the high costs of Ir, as compared to the cheaper Li2MnO3 alternative.[17]
Organoiridium chemistry
See main article: article and Organoiridium chemistry.
Organoiridium compounds contain iridium–carbon bonds. Early studies identified the very stable tetrairidium dodecacarbonyl, .[2] In this compound, each of the iridium atoms is bonded to the other three, forming a tetrahedral cluster. The discovery of Vaska's complex opened the door for oxidative addition reactions, a process fundamental to useful reactions. For example, Crabtree's catalyst, a homogeneous catalyst for hydrogenation reactions.[18] [19] Iridium is usually supplied commercially in the Ir(III) and Ir(IV) oxidation states. Important starting reagents being hydrated iridium trichloride and ammonium hexachloroiridate. These salts are reduced upon treatment with CO, hydrogen, and alkenes. Illustrative is the carbonylation of the trichloride:
IrCl3(H2O)x + 3 CO → [Ir(CO)<sub>2</sub>Cl<sub>2</sub>]− + CO2 + 2 H+ + Cl− + (x-1) H2O
Many organoiridium(III) compounds are generated from pentamethylcyclopentadienyl iridium dichloride dimer. Many of derivatives feature kinetically inert cyclometalated ligands.[20] Related half-sandwich complexes were central in the development of C-H activation.[21] [22]
Iridium complexes played a pivotal role in the development of carbon–hydrogen bond activation (C–H activation), which promises to allow functionalization of hydrocarbons, which are traditionally regarded as unreactive.[23]
See also
Notes and References
- Wang . Guanjun . Zhou . Mingfei . Goettel . James T. . Schrobilgen . Gary G. . Su . Jing . Li . Jun . Schlöder . Tobias . Riedel . Sebastian . 2014 . Identification of an iridium-containing compound with a formal oxidation state of IX . Nature . 514 . 7523 . 475–477 . 10.1038/nature13795 . 25341786 . 2014Natur.514..475W . 4463905.
- Book: Greenwood, N. N. . Earnshaw, A. . Chemistry of the Elements . 2nd . Oxford: Butterworth–Heinemann . 1997 . 978-0-7506-3365-9 . 1113–1143, 1294 . 213025882.
- Jung . D. . High Oxygen Pressure and the Preparation of New Iridium (VI) Oxides with Perovskite Structure: (M = Ca, Mg) . Journal of Solid State Chemistry . 115 . 2 . 1995 . 447–455 . 10.1006/jssc.1995.1158 . 1995JSSCh.115..447J . Demazeau . Gérard.
- Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII . Angewandte Chemie International Edition . 48 . 2009 . 7879–7883 . Gong, Y. . Zhou, M. . Kaupp, M. . Riedel, S. . 10.1002/anie.200902733 . 19593837 . 42.
- Book: Handbook of Inorganic Compounds . Perry, D. L. . 203–204 . 1995 . 978-1-4398-1461-1 . CRC Press.
- 10.1002/anie.200902733 . Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII . 2009 . Gong . Yu . Zhou . Mingfei . Kaupp . Martin . Riedel . Sebastian . Angewandte Chemie International Edition . 48 . 42 . 7879–7883 . 19593837.
- 10.1021/jp990388o . Reactions of Laser-Ablated Iridium Atoms with O2. Infrared Spectra and DFT Calculations for Iridium Dioxide and Peroxoiridium(VI) Dioxide in Solid Argon . 1999 . Citra . Angelo . Andrew . Lester . J. Phys. Chem. A . 103 . 21 . 4182–4190 . 1999JPCA..103.4182C.
- Himmel . D. . Knapp . C. . Patzschke . M. . Riedel . S. . How far can we go? Quantum-chemical investigations of oxidation state IX . ChemPhysChem . 11 . 865–869 . 2010 . 4 . 10.1002/cphc.200900910 . 20127784.
- Identification of an iridium-containing compound with a formal oxidation state of IX . Guanjun . Wang . Mingfei . Zhou . James T. . Goettel . Gary J. . Schrobilgen . Jing . Su . Jun . Li . Tobias . Schlöder . Sebastian . Riedel . Nature . 514 . 475–477 . 23 October 2014 . 7523 . 10.1038/nature13795 . 25341786 . 2014Natur.514..475W . 4463905.
- Book: Holleman, A. F. . Wiberg, E. . Wiberg, N. . Inorganic Chemistry . 1st . Academic Press . 2001 . 978-0-12-352651-9 . 47901436.
- 10.1021/acs.chemrev.6b00080 . Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions . 2016 . Esteruelas . Miguel A. . López . Ana M. . Oliván . Montserrat . Chemical Reviews . 116 . 15 . 8770–8847 . 27268136 . free. 10261/136216 . free .
- , a new metal hydride containing saddle-like and square-pyramidal hydrido complexes . Černý . R. . Joubert, J.-M. . Kohlmann, H. . Yvon, K. . Journal of Alloys and Compounds . 340 . 1–2 . 2002 . 180–188 . 10.1016/S0925-8388(02)00050-6.
- The chemistry of ruthenium, osmium, rhodium, iridium, palladium, and platinum in the higher oxidation states . Coordination Chemistry Reviews . 46 . 1982 . 1–127 . Gulliver, D. J. . Levason, W. . 10.1016/0010-8545(82)85001-7.
- Book: 8 . Renner, H. . Schlamp, G. . Kleinwächter, I. . Drost, E. . Lüschow, H. M. . Tews, P. . Panster, P. . Diehl, M. . Lang, J. . Kreuzer, T. . Knödler, A. . Starz, K. A. . Dermann, K. . Rothaut, J. . Drieselman, R. . Platinum group metals and compounds . Ullmann's Encyclopedia of Industrial Chemistry . Wiley . 2002 . 10.1002/14356007.a21_075 . 978-3-527-30673-2.
- 10.1016/j.jssc.2008.04.005 . Structure and properties of ordered Li2IrO3 and Li2PtO3 . Journal of Solid State Chemistry . 181 . 8 . 1803 . 2008 . O'Malley . Matthew J. . Verweij . Henk . Woodward . Patrick M. . 2008JSSCh.181.1803O.
- 10.1038/srep35362 . Single crystal growth from separated educts and its application to lithium transition-metal oxides . Scientific Reports . 6 . 35362 . 2016 . Freund . F. . Williams . S. C. . Johnson . R. D. . Coldea . R. . Gegenwart . P. . Jesche . A. . 1604.04551 . 27748402 . 5066249 . 2016NatSR...635362F.
- Book: Yoshio, Masaki . Brodd, Ralph J. . Kozawa, Akiya . Lithium-Ion Batteries: Science and Technologies . 17 July 2010 . Springer Science & Business Media . 978-0-387-34445-4 . 10.
- R. H. . Crabtree . Robert H. Crabtree . Iridium compounds in catalysis . Accounts of Chemical Research . 1979 . 12 . 331–337 . 10.1021/ar50141a005 . 9.
- Book: The Organometallic Chemistry of the Transition Metals . Crabtree, R. H. . 2005 . Wiley . 978-0-471-66256-3 . 224478241 . Robert H. Crabtree . https://web.archive.org/web/20121119073400/http://chimicibicocca.altervista.org/data/chimica_lucidi.pdf . 2012-11-19.
- Organoiridium Complexes: Anticancer Agents and Catalysts . Liu, Zhe . Sadler, Peter J. . Accounts of Chemical Research . 2014 . 47 . 4 . 1174–1185 . 10.1021/ar400266c . 3994614 . 24555658.
- Carbon–hydrogen activation in saturated hydrocarbons: direct observation of M + R-H → M(R)(H) . Andrew H. Janowicz . Robert G. Bergman . J. Am. Chem. Soc. . 1982 . 104 . 352–354 . 10.1021/ja00365a091.
- 10.1021/ja00377a032 . 104 . Oxidative addition of the carbon–hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex . 1982 . Journal of the American Chemical Society . 3723–3725 . Graham . William A.G. . 13.
- 10.1039/c0cs00156b . Regioselectivity of the Borylation of Alkanes and Arenes . 2011 . Hartwig . John F. . Chemical Society Reviews . 40 . 4 . 1992–2002 . 21336364.