The inverse tangent integral is a special function, defined by:
\operatorname{Ti}2(x)=
x | |
\int | |
0 |
\arctant | |
t |
dt
The inverse tangent integral is defined by:
\operatorname{Ti}2(x)=
x | |
\int | |
0 |
\arctant | |
t |
dt
Its power series representation is
\operatorname{Ti}2(x)=x-
x3 | |
32 |
+
x5 | |
52 |
-
x7 | |
72 |
+ …
|x|\le1.
The inverse tangent integral is closely related to the dilogarithm and can be expressed simply in terms of it:
\operatorname{Ti}2(z)=
1 | |
2i |
\left(\operatorname{Li}2(iz)-\operatorname{Li}2(-iz)\right)
\operatorname{Ti}2(x)=\operatorname{Im}(\operatorname{Li}2(ix))
The inverse tangent integral is an odd function:
\operatorname{Ti}2(-x)=-\operatorname{Ti}2(x)
The values of Ti2(x) and Ti2(1/x) are related by the identity
\operatorname{Ti}2(x)-\operatorname{Ti}2\left(
1 | |
x |
\right)=
\pi | |
2 |
logx
\arctan(t)+\arctan(1/t)=\pi/2
The special value Ti2(1) is Catalan's constant .
Similar to the polylogarithm , the function
\operatorname{Ti}n(x)=
infty | |
\sum\limits | |
k=0 |
(-1)kx2k+1 | |
\left(2k+1\right)n |
=x-
x3 | |
3n |
+
x5 | |
5n |
-
x7 | |
7n |
+ …
\operatorname{Ti}n(x)=
x | |
\int | |
0 |
\operatorname{Ti | |
n-1 |
(t)}{t}dt
By this series representation it can be seen that the special values
\operatorname{Ti}n(1)=\beta(n)
\beta(s)
The inverse tangent integral is related to the Legendre chi function by:
\operatorname{Ti}2(x)=-i\chi2(ix)
\chi2(x)
The inverse tangent integral can also be written in terms of the Lerch transcendent
\operatorname{Ti}2(x)=
1 | |
4 |
x\Phi(-x2,2,1/2)
The notation Ti2 and Tin is due to Lewin. Spence (1809)[1] studied the function, using the notation
\overset{n}{\operatorname{C}}(x)
x | |
\int | |
0 |
\tan-1t | |
t |
dt