Inverse limit explained

In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory.

By working in the dual category, that is by reversing the arrows, an inverse limit becomes a direct limit or inductive limit, and a limit becomes a colimit.

Formal definition

Algebraic objects

We start with the definition of an inverse system (or projective system) of groups and homomorphisms. Let

(I,\leq)

be a directed poset (not all authors require I to be directed). Let (Ai)iI be a family of groups and suppose we have a family of homomorphisms

fij:Aj\toAi

for all

i\leqj

(note the order) with the following properties:

fii

is the identity on

Ai

,

fik=fij\circfjkforalli\leqj\leqk.

Then the pair

((Ai)i\in,(fij)i\leq)

is called an inverse system of groups and morphisms over

I

, and the morphisms

fij

are called the transition morphisms of the system.

We define the inverse limit of the inverse system

((Ai)i\in,(fij)i\leq)

as a particular subgroup of the direct product of the

Ai

's:

A=\varprojlimi\in{Ai}=\left\{\left.\veca\in\prodi\inAi\right|ai=fij(aj)foralli\leqjinI\right\}.

The inverse limit

A

comes equipped with natural projections which pick out the th component of the direct product for each

i

in

I

. The inverse limit and the natural projections satisfy a universal property described in the next section.

This same construction may be carried out if the

Ai

's are sets,[1] semigroups,[1] topological spaces,[1] rings, modules (over a fixed ring), algebras (over a fixed ring), etc., and the homomorphisms are morphisms in the corresponding category. The inverse limit will also belong to that category.

General definition

The inverse limit can be defined abstractly in an arbitrary category by means of a universal property. Let (X_i, f_) be an inverse system of objects and morphisms in a category C (same definition as above). The inverse limit of this system is an object X in C together with morphisms i: XXi (called projections) satisfying i =

fij

j for all ij. The pair (X, i) must be universal in the sense that for any other such pair (Y, ψi) there exists a unique morphism u: YX such that the diagram

commutes for all ij. The inverse limit is often denoted

X=\varprojlimXi

with the inverse system (X_i, f_) being understood.

In some categories, the inverse limit of certain inverse systems does not exist. If it does, however, it is unique in a strong sense: given any two inverse limits X and X of an inverse system, there exists a unique isomorphism X′ → X commuting with the projection maps.

Inverse systems and inverse limits in a category C admit an alternative description in terms of functors. Any partially ordered set I can be considered as a small category where the morphisms consist of arrows ij if and only if ij. An inverse system is then just a contravariant functor IC. Let

Iop
C
be the category of these functors (with natural transformations as morphisms). An object X of C can be considered a trivial inverse system, where all objects are equal to X and all arrow are the identity of X. This defines a "trivial functor" from C to
Iop
C

.

The inverse limit, if it exists, is defined as a right adjoint of this trivial functor.

Examples

Z/pnZ

(see modular arithmetic) with the index set being the natural numbers with the usual order, and the morphisms being "take remainder". That is, one considers sequences of integers

(n1,n2,...)

such that each element of the sequence "projects" down to the previous ones, namely, that

ni\equivnjmodpi

whenever

i<j.

The natural topology on the p-adic integers is the one implied here, namely the product topology with cylinder sets as the open sets.

R/pnZ

with the index set being the natural numbers with the usual order, and the morphisms being "take remainder". That is, one considers sequences of real numbers

(x1,x2,...)

such that each element of the sequence "projects" down to the previous ones, namely, that

xi\equivxjmodpi

whenever

i<j.

Its elements are exactly of form

n+r

, where

n

is a p-adic integer, and

r\in[0,1)

is the "remainder".

styleR[[t]]

of formal power series over a commutative ring R can be thought of as the inverse limit of the rings

styleR[t]/tnR[t]

, indexed by the natural numbers as usually ordered, with the morphisms from

styleR[t]/tn+jR[t]

to

styleR[t]/tnR[t]

given by the natural projection.

fij

) have a greatest element m. Then the natural projection m: XXm is an isomorphism.

Derived functors of the inverse limit

For an abelian category C, the inverse limit functor

\varprojlim:CIC

is left exact. If I is ordered (not simply partially ordered) and countable, and C is the category Ab of abelian groups, the Mittag-Leffler condition is a condition on the transition morphisms fij that ensures the exactness of

\varprojlim

. Specifically, Eilenberg constructed a functor

\varprojlim{}1:\operatorname{Ab}I\operatorname{Ab}

(pronounced "lim one") such that if (Ai, fij), (Bi, gij), and (Ci, hij) are three inverse systems of abelian groups, and

0 → AiBiCi → 0

is a short exact sequence of inverse systems, then

0 → \varprojlimAi\varprojlimBi\varprojlim

1A
C
i
is an exact sequence in Ab.

Mittag-Leffler condition

If the ranges of the morphisms of an inverse system of abelian groups (Ai, fij) are stationary, that is, for every k there exists jk such that for all ij :

fkj(Aj)=fki(Ai)

one says that the system satisfies the Mittag-Leffler condition.

The name "Mittag-Leffler" for this condition was given by Bourbaki in their chapter on uniform structures for a similar result about inverse limits of complete Hausdorff uniform spaces. Mittag-Leffler used a similar argument in the proof of Mittag-Leffler's theorem.

The following situations are examples where the Mittag-Leffler condition is satisfied:

An example where

\varprojlim{}1

is non-zero is obtained by taking I to be the non-negative integers, letting Ai = piZ, Bi = Z, and Ci = Bi / Ai = Z/piZ. Then
1A
\varprojlim{}
i=Z

p/Z

where Zp denotes the p-adic integers.

Further results

More generally, if C is an arbitrary abelian category that has enough injectives, then so does CI, and the right derived functors of the inverse limit functor can thus be defined. The nth right derived functor is denoted

Rn\varprojlim:CIC.

In the case where C satisfies Grothendieck's axiom (AB4*), Jan-Erik Roos generalized the functor lim1 on AbI to series of functors limn such that

\varprojlim{}n\congRn\varprojlim.

It was thought for almost 40 years that Roos had proved (in French: Sur les foncteurs dérivés de lim. Applications.) that lim1 Ai = 0 for (Ai, fij) an inverse system with surjective transition morphisms and I the set of non-negative integers (such inverse systems are often called "Mittag-Leffler sequences"). However, in 2002, Amnon Neeman and Pierre Deligne constructed an example of such a system in a category satisfying (AB4) (in addition to (AB4*)) with lim1 Ai ≠ 0. Roos has since shown (in "Derived functors of inverse limits revisited") that his result is correct if C has a set of generators (in addition to satisfying (AB3) and (AB4*)).

\alephd

(the dth infinite cardinal), then Rnlim is zero for all nd + 2. This applies to the I-indexed diagrams in the category of R-modules, with R a commutative ring; it is not necessarily true in an arbitrary abelian category (see Roos' "Derived functors of inverse limits revisited" for examples of abelian categories in which limn, on diagrams indexed by a countable set, is nonzero for n > 1).

Related concepts and generalizations

The categorical dual of an inverse limit is a direct limit (or inductive limit). More general concepts are the limits and colimits of category theory. The terminology is somewhat confusing: inverse limits are a class of limits, while direct limits are a class of colimits.

Notes

  1. John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133. .

References