Inverse gamma function explained

In mathematics, the inverse gamma function

\Gamma-1(x)

is the inverse function of the gamma function. In other words,

y=\Gamma-1(x)

whenever \Gamma(y)=x. For example,

\Gamma-1(24)=5

.[1] Usually, the inverse gamma function refers to the principal branch with domain on the real interval

\left[\beta,+infty\right)

and image on the real interval

\left[\alpha,+infty\right)

, where

\beta=0.8856031\ldots

is the minimum value of the gamma function on the positive real axis and

\alpha=\Gamma-1(\beta)=1.4616321\ldots

is the location of that minimum.[2]

Definition

The inverse gamma function may be defined by the following integral representation[3] \Gamma^(x)=a+bx+\int_^\left(\frac-\frac\right)d\mu(t)\,,where

\mu(t)

is a Borel measure such that \int_^\left(\frac\right)d\mu(t)<\infty \,, and

a

and

b

are real numbers with

b\geqq0

.

Approximation

To compute the branches of the inverse gamma function one can first compute the Taylor series of

\Gamma(x)

near

\alpha

. The series can then be truncated and inverted, which yields successively better approximations to

\Gamma-1(x)

. For instance, we have the quadratic approximation:[4]

\Gamma^\left(x\right)\approx\alpha+\sqrt.

The inverse gamma function also has the following asymptotic formula[5] \Gamma^(x)\sim\frac+\frac\,,where

W0(x)

is the Lambert W function. The formula is found by inverting the Stirling approximation, and so can also be expanded into an asymptotic series.

Series expansion

1
\Gamma(x)
near the poles at the negative integers, and then invert the series.

Setting

z=1
x
then yields, for the n th branch
-1
\Gamma
n

(z)

of the inverse gamma function (

n\ge0

)[6] \Gamma_^(z)=-n+\frac+\frac+\frac+O\left(\frac\right)\,,where

\psi(n)(x)

is the polygamma function.

Notes and References

  1. Borwein . Jonathan M. . Corless . Robert M.. Gamma and Factorial in the Monthly . The American Mathematical Monthly . 2017 . 125 . 5 . 400–424 . 10.1080/00029890.2018.1420983 . 1703.05349 . 48663320 . 119324101.
  2. Uchiyama . Mitsuru . The principal inverse of the gamma function . April 2012 . Proceedings of the American Mathematical Society. 140 . 4 . 1347 . 10.1090/S0002-9939-2011-11023-2 . 41505586 . 85549521 . free .
  3. Pedersen . Henrik . "Inverses of gamma functions" . Constructive Approximation . 9 September 2013 . 7 . 2 . 251–267 . 10.1007/s00365-014-9239-1 . 1309.2167 . 253898042 .
  4. Robert M.. Corless . Folitse Komla. Amenyou . Jeffrey . David . 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) . Properties and Computation of the Functional Inverse of Gamma . International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) . 2017 . 65 . 10.1109/SYNASC.2017.00020. 978-1-5386-2626-9 . 53287687 .
  5. MS . Amenyou . Folitse Komla . Jeffrey . David . "Properties and Computation of the inverse of the Gamma Function" . 2018 . 28 .
  6. Couto . Ana Carolina Camargos . Jeffrey . David . Corless . Robert . November 2020 . The Inverse Gamma Function and its Numerical Evaluation . Section 8 . Maple Conference Proceedings.