Inverse Dirichlet distribution explained

In statistics, the inverse Dirichlet distribution is a derivation of the matrix variate Dirichlet distribution. It is related to the inverse Wishart distribution.

Suppose

U1,\ldots,Ur

are

p x p

positive definite matrices with a matrix variate Dirichlet distribution,

\left(U1,\ldots,Ur\right)\simDp\left(a1,\ldots,ar;ar+1\right)

. Then

Xi={U

-1
i}

,i=1,\ldots,r

have an inverse Dirichlet distribution, written

\left(X1,\ldots,Xr\right)\sim\operatorname{ID}\left(a1,\ldots,ar;ar+1\right)

. Their joint probability density function is given by

\left\{\betap\left(a1,\ldots,ar;ar+1\right)\right\}-1

-ai-(p+1)/2
\prod
i\right)

\det\left(Ip-\sum

-1
i}
ar+1-(p+1)/2
\right)

References

A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.