In statistics, the inverse Dirichlet distribution is a derivation of the matrix variate Dirichlet distribution. It is related to the inverse Wishart distribution.
Suppose
U1,\ldots,Ur
p x p
\left(U1,\ldots,Ur\right)\simDp\left(a1,\ldots,ar;ar+1\right)
Xi={U
-1 | |
i} |
,i=1,\ldots,r
\left(X1,\ldots,Xr\right)\sim\operatorname{ID}\left(a1,\ldots,ar;ar+1\right)
\left\{\betap\left(a1,\ldots,ar;ar+1\right)\right\}-1
-ai-(p+1)/2 | |
\prod | |
i\right) |
\det\left(Ip-\sum
-1 | |
i} |
ar+1-(p+1)/2 | |
\right) |
A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.