The factorization of a linear partial differential operator (LPDO) is an important issue in the theory of integrability, due to the Laplace-Darboux transformations,[1] which allow construction of integrable LPDEs. Laplace solved the factorization problem for a bivariate hyperbolic operator of the second order (see Hyperbolic partial differential equation), constructing two Laplace invariants. Each Laplace invariant is an explicit polynomial condition of factorization; coefficients of this polynomial are explicit functions of the coefficients of the initial LPDO. The polynomial conditions of factorization are called invariants because they have the same form for equivalent (i.e. self-adjoint) operators.
Beals-Kartashova-factorization (also called BK-factorization) is a constructive procedure to factorize a bivariate operator of the arbitrary order and arbitrary form. Correspondingly, the factorization conditions in this case also have polynomial form, are invariants and coincide with Laplace invariants for bivariate hyperbolic operators of the second order. The factorization procedure is purely algebraic, the number of possible factorizations depending on the number of simple roots of the Characteristic polynomial (also called symbol) of the initial LPDO and reduced LPDOs appearing at each factorization step. Below the factorization procedure is described for a bivariate operator of arbitrary form, of order 2 and 3. Explicit factorization formulas for an operator of the order
n
Consider an operator
l{A}2=a20
2 | |
\partial | |
x |
+a11\partialx\partialy+a02
2+a | |
\partial | |
10 |
\partialx+a01\partialy+a00.
with smooth coefficients and look for a factorization
l{A}2=(p1\partialx+p2\partialy+p3)(p4\partialx+p5\partialy+p6).
Let us write down the equations on
pi
\partialx(\alpha \partialy)=\partialx(\alpha)\partialy+ \alpha\partialxy.
Then in all cases
a20=p1p4,
a11=p2p4+p1p5,
a02=p2p5,
a10=l{L}(p4)+p3p4+p1p6,
a01=l{L}(p5)+p3p5+p2p6,
a00=l{L}(p6)+p3p6,
where the notation
l{L}=p1\partialx+p2\partialy
Without loss of generality,
a20\ne0,
p1\ne0,
p1=1.
p2,
...
p6
At the first step, the roots of a quadratic polynomial have to be found.
At the second step, a linear system of two algebraic equations has to be solved.
At the third step, one algebraic condition has to be checked.
Step 1.Variables
p2,
p4,
p5
a20=p1p4,
a11=p2p4+p1p5,
a02=p2p5.
The (possible) solutions are then the functions of the roots of a quadratic polynomial:
l{P}2(-p2)=a20(-
2 | |
p | |
2) |
+a11(-p2)+a02=0
Let
\omega
l{P}2,
p1=1,
p2=-\omega,
p4=a20,
p5=a20\omega+a11,
Step 2.Substitution of the results obtained at the first step, into the next two equations
a10=l{L}(p4)+p3p4+p1p6,
a01=l{L}(p5)+p3p5+p2p6,
yields linear system of two algebraic equations:
a10=l{L}a20+p3a20+p6,
a01=l{L}(a11+a20\omega)+p3(a11+a20\omega)- \omegap6.,
In particularly, if the root
\omega
l{P}2'(\omega)=2a20\omega+a11\ne0,
p3=
\omegaa10+a01-\omegal{L | |
a |
20-l{L}(a20\omega+a11)} {2a20\omega+a11
p6=
(a20\omega+a11)(a10-l{L | |
a |
20)-a20(a01-l{L}(a20\omega+a11))}{2a20\omega+a11
At this step, for each root of the polynomial
l{P}2
pj
Step 3.Check factorization condition (which is the last of the initial 6 equations)
a00=l{L}(p6)+p3p6,
pj
\omega
a00=l{L}\left\{
\omegaa10+a01-l{L | |
(2a |
20\omega+a11)} {2a20\omega+a11
If
l2=a00-l{L}\left\{
\omegaa10+a01-l{L | |
(2a |
20\omega+a11)} {2a20\omega+a11
the operator
l{A}2
pj
Consider an operator
l{A}3=\sumj+k\le3ajk
k | |
\partial | |
y |
=a30
3 | |
\partial | |
x |
+ a21
2 | |
\partial | |
x |
\partialy+a12\partialx
2 | |
\partial | |
y |
+a03
3 | |
\partial | |
y |
+ a20
2+a | |
\partial | |
11 |
\partialx\partialy+a02
2+a | |
\partial | |
10 |
\partialx+a01\partialy+a00.
with smooth coefficients and look for a factorization
l{A}3=(p1\partialx+p2\partialy+p3)(p4
2 | |
\partial | |
x |
+p5\partialx\partialy+p6
2 | |
\partial | |
y |
+p7 \partialx+p8\partialy+p9).
Similar to the case of the operator
l{A}2,
a30=p1p4,
a21=p2p4+p1p5,
a12=p2p5+p1p6,
a03=p2p6,
a20=l{L}(p4)+p3p4+p1p7,
a11=l{L}(p5)+p3p5+p2p7+p1p8,
a02=l{L}(p6)+p3p6+p2p8,
a10=l{L}(p7)+p3p7+p1p9,
a01=l{L}(p8)+p3p8+p2p9,
a00=l{L}(p9)+p3p9,
l{L}=p1\partialx+p2\partialy,
a30\ne0,
p1=1,
At the first step, the roots of a cubic polynomial
l{P}3(-p2):=a30
3 | |
(-p | |
2) |
+a21(-
2 | |
p | |
2) |
+ a12(-p2)+a03=0.
have to be found. Again
\omega
p1=1,
p2=-\omega,
p4=a30,
p5=a30\omega+a21,
p6=a30
2+a | |
\omega | |
21 |
\omega+a12.
At the second step, a linear system of three algebraic equations has to be solved:
a20-l{L}a30=p3a30+p7,
a11-l{L}(a30\omega+a21)=p3(a30\omega+a21)-\omegap7+p8,
a02-l{L}(a30
2+a | |
\omega | |
21 |
\omega+a12)=p3(a30
2+a | |
\omega | |
21 |
\omega+a12)-\omegap8.
At the third step, two algebraic conditions have to be checked.
Definition The operators
l{A}
\tilde{l{A}}
\tilde{l{A}}g=e-\varphil{A}(e\varphig).
\tilde{l{A}}
l{A}=\sumj+k\leajk
k=l{L}\circ \sum | |
\partial | |
j+k\le(n-1) |
pjk
k | |
\partial | |
y |
l{L}=\partialx-\omega\partialy+p
\omega
n | |
l{P}(t)=\sum | |
k=0 |
an-k,ktn-k, l{P}(\omega)=0.
\tilde{\omega}
for
n=2 → l2=0,
for
n=3 → l3=0,l31=0,
for
n=4 → l4=0,l41=0,l42=0,
and so on. All functions
l2,l3,l31,l4,l41, l42,...
l2=a00-l{L}(p6)+p3p6,
l3=a00-l{L}(p9)+p3p9,
l31=a01-l{L}(p8)+p3p8+p2p9,
and so on.
Theorem All functions
l2=a00-l{L}(p6)+p3p6,l3=a00-l{L}(p9)+p3p9,l31,....
Definition Invariants
l2=a00-l{L}(p6)+p3p6,l3=a00-l{L}(p9)+p3p9,l31,.....
In particular case of the bivariate hyperbolic operator its generalizedinvariants coincide with Laplace invariants (see Laplace invariant).
Corollary If an operator
\tilde{l{A}}
Equivalent operators are easy to compute:
e-\varphi\partialxe\varphi=\partialx+\varphix, e-\varphi\partialye\varphi= \partialy+\varphiy,
e-\varphi\partialx\partialye\varphi=e-\varphi\partialxe\varphie-\varphi\partialye\varphi=(\partialx+\varphix)\circ(\partialy+\varphiy)
A1=\partialx\partialy+x\partialx+1=\partialx(\partialy+x), l2(A1)=1-1-0=0;
A2=\partialx\partialy+x\partialx+\partialy+x+1,
-x | |
A | |
2=e |
x | |
A | |
1e |
; l2(A2)=(x+1)-1-x=0;
A3=\partialx\partialy+2x\partialx+(y+1)\partialy+2(xy+x+1),
-xy | |
A | |
3=e |
xy | |
A | |
2e |
; l2(A3)=2(x+1+xy)-2-2x(y+1)=0;
A4=\partialx\partialy+x\partialx+(\cosx+1)\partialy+x\cosx+x+1,
-\sinx | |
A | |
4=e |
\sinx | |
A | |
2e |
; l2(A4)=0.
Factorization of an operator is the first step on the way of solving corresponding equation. But for solution we need right factors and BK-factorization constructs left factors which are easy to construct. On the other hand, the existence of a certain right factor of a LPDO is equivalent to the existence of a corresponding left factor of the transpose of that operator.
DefinitionThe transpose
l{A}t
l{A}=\suma\alpha\partial\alpha, \partial\alpha
\alpha1 | |
=\partial | |
1 |
\alphan | |
… \partial | |
n |
.
l{A}tu=\sum(-1)|\alpha|
\alpha(a | |
\partial | |
\alpha |
u).
\partial\gamma(uv)=\sum\binom\gamma\alpha\partial\alphau,\partial\gamma-\alphav
l{A}t=\sum(-1)|\alpha+\beta|\binom{\alpha+\beta}\alpha(\partial\betaa\alpha+\beta)\partial\alpha.
Now the coefficients are
l{A}t=\sum\tilde{a}\alpha\partial\alpha,
\tilde{a}\alpha=\sum(-1)|\alpha+\beta|
\beta(a | |
\binom{\alpha+\beta}{\alpha}\partial | |
\alpha+\beta |
).
with a standard convention for binomial coefficients in severalvariables (see Binomial coefficient), e.g. in two variables
\binom\alpha\beta=\binom{(\alpha1,\alpha2)}{(\beta1,\beta2)}=\binom{\alpha1}{\beta1}\binom{\alpha2}{\beta2}.
l{A}2
\tilde{a}jk=ajk, j+k=2;\tilde{a}10=-a10+2\partialxa20+\partialy a11,\tilde{a}01=-a01+\partialxa11+2\partialya02,
\tilde{a}00=a00-\partialxa10-\partialya01
2 | |
+\partial | |
x |
a20+\partialx\partialx a11
2 | |
+\partial | |
y |
a02.
\partialxx-\partialyy+y\partialx+x\partial
|
(y2-x2)-1
[\partialx+\partialy+\tfrac12(y-x)][...]
t | |
l{A} | |
1 |
[...][\partialx-\partialy+\tfrac12(y+x)].