In numerical analysis, interpolative decomposition (ID) factors a matrix as the product of two matrices, one of which contains selected columns from the original matrix, and the other of which has a subset of columns consisting of the identity matrix and all its values are no greater than 2 in absolute value.
Let
A
m x n
r
A
A=A(:,J)X,
J
r
\{1,\ldots,n\};
m x r
A(:,J)
J
A;
X
r x n
X
r x r
Note that a similar decomposition can be done using the rows of
A
Let
A
3 x 3
A=\begin{bmatrix} 34&58&52\\ 59&89&80\\ 17&29&26 \end{bmatrix}.
If
J=\begin{bmatrix} 2&1 \end{bmatrix},
then
A=\begin{bmatrix} 58&34\\ 89&59\\ 29&17 \end{bmatrix}\begin{bmatrix} 0&1&
29 | |
33 |
\\ 1&0&
1 | |
33 |
\end{bmatrix} ≈ \begin{bmatrix} 58&34\\ 89&59\\ 29&17 \end{bmatrix}\begin{bmatrix} 0&1&0.8788\\ 1&0&0.0303 \end{bmatrix}.