Interaction-free measurement explained

In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position, presence, or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment,[1] the Elitzur–Vaidman bomb-testing problem,[2] and certain double-cavity optical systems, such as Hardy's paradox.

In Quantum Computation such measurements are referred to as Counterfactual Quantum Computation,[3] an idea introduced by physicists Graeme Mitchinson and Richard Jozsa. Examples include Keith Bowden's Counterfactual Mirror Array[4] describing a digital computer that could be counterfactually interrogated to calculate whether a light beam would fail to pass through a maze.[5]

Initially proposed as thought experiments by R. H. Dicke in 1981, interaction-free measurements have been experimentally demonstrated in various configurations.[6] [7] [8]

Interaction-free measurements have also been proposed as a way to reduce sample damage in electron microscopy.[9] [10]

Counterfactual quantum communication

In 2012 the idea of counterfactual quantum communication has been proposed and demonstrated.[11] Its first achievement was reported in 2017. According to contemporary conceptions of counterfactual quantum communication, information can thereby be exchanged without any physical particle / matter / energy being transferred between the parties, without quantum teleportation and without the information being the absence of a signal.[12] In 2020 research suggested that this is based on some form of relation between the properties of modular angular momentum with massless current of modular angular momentum current crossing the "transmission channel" with their interpretation's explanation not being based on "spooky action at a distance" but properties of a particle being able to "travel locally through regions from which the particle itself is excluded".[13] [14] [15]

See also

References

  1. Renninger . M. . Mauritius Renninger. Zum Wellen-Korpuskel-Dualismus . . Springer Science and Business Media LLC . 136 . 3 . 1953 . 1434-6001 . 10.1007/bf01325679 . 251–261 . 123122734 . de.
  2. Elitzur. Avshalom C.. Avshalom Elitzur. Vaidman. Lev. Lev Vaidman. 1993-07-01. Quantum mechanical interaction-free measurements. Foundations of Physics. en. 23. 7. 987–997. 10.1007/BF00736012. 0015-9018. hep-th/9305002. 1993FoPh...23..987E. 10.1.1.263.5508. 18707734.
  3. Mitchison. Graeme. Jozsa. Richard. Counterfactual computation. Proceedings of the Royal Society of London A. May 8, 2001. 457. 2009. 1175–1193. 10.1098/rspa.2000.0714. quant-ph/9907007. 2001RSPSA.457.1175M. 10.1.1.251.9270. 16208575.
  4. Bowden, Keith G, "Classical Computation can be Counterfactual", in Aspects I, Proc ANPA19, Cambridge 1997 (published May 1999),
  5. Web site: Can Schrodinger's Cat Collapse the Wavefunction? . Bowden, Keith . 2007-12-08 . 1997-03-15 . dead . https://web.archive.org/web/20071016121316/http://nonlocal.com/quantum-d/v2/kbowden_03-15-97.html . 2007-10-16 .
  6. Kwiat. Paul. Weinfurter. Harald. Herzog. Thomas. Zeilinger. Anton. Kasevich. Mark A.. 1995-06-12. Interaction-Free Measurement. Physical Review Letters. 74. 24. 4763–4766. 10.1103/PhysRevLett.74.4763. 10058593. 1995PhRvL..74.4763K. 10.1.1.561.6205.
  7. White. Andrew G.. Andrew G. White. 1998. "Interaction-free" imaging. Physical Review A. 58. 1. 605–613. 10.1103/PhysRevA.58.605. quant-ph/9803060. 1998PhRvA..58..605W. 125768139.
  8. Tsegaye. T.. Goobar. E.. Karlsson. A.. Björk. G.. Loh. M. Y.. Lim. K. H.. 1998-05-01. Efficient interaction-free measurements in a high-finesse interferometer. Physical Review A. 57. 5. 3987–3990. 10.1103/PhysRevA.57.3987. 1998PhRvA..57.3987T.
  9. Putnam. William P.. 2009. Noninvasive electron microscopy with interaction-free quantum measurements. Physical Review A. 80. 4. 040902. 10.1103/PhysRevA.80.040902. 2009PhRvA..80d0902P. free. 1721.1/52312. free.
  10. Kruit. P.. Hobbs. R.G.. Kim. C-S.. Yang. Y.. Manfrinato. V.R.. Hammer. J.. Thomas. S.. Weber. P.. Klopfer. B.. May 2016. Designs for a quantum electron microscope. Ultramicroscopy. 164. 31–45. 10.1016/j.ultramic.2016.03.004. 26998703. 0304-3991. 1510.05946. 22658047.
  11. Liu . Yang . Ju . Lei . Liang . Xiao-Lei . Tang . Shi-Biao . Tu . Guo-Liang Shen . Zhou . Lei . Peng . Cheng-Zhi . Chen . Kai . Chen . Teng-Yun . Chen . Zeng-Bing . Pan . Jian-Wei . 5. Experimental Demonstration of Counterfactual Quantum Communication . . American Physical Society (APS) . 109 . 3 . 2012-07-19 . 0031-9007 . 10.1103/physrevlett.109.030501 . 030501. 22861830 . 1107.5754 . 2012PhRvL.109c0501L . 19114400 .
  12. News: Scientists Achieve Direct Counterfactual Quantum Communication For The First Time . 16 January 2021 . Futurism . en.
  13. News: Elementary particles part ways with their properties . 16 January 2021 . phys.org . en.
  14. News: McRae . Mike . In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin . 16 January 2021 . ScienceAlert . en-gb.
  15. Aharonov . Yakir . Rohrlich . Daniel . What Is Nonlocal in Counterfactual Quantum Communication? . Physical Review Letters . 21 December 2020 . 125 . 26 . 260401 . 10.1103/PhysRevLett.125.260401 . 33449741 . 2011.11667 . 2020PhRvL.125z0401A . 145994494 . 16 January 2021. Available on arXiv under CC BY 4.0.

Bibliography

  1. Renninger . M. . Mauritius Renninger. Messungen ohne Störung des Meßobjekts . Observations without disturbing the object. . Springer Science and Business Media LLC . 158 . 4 . 1960 . 1434-6001 . 10.1007/bf01327019 . 417–421 . 1960ZPhy..158..417R . 123027469 . de.
  2. Renninger . M. . Mauritius Renninger. Zum Wellen-Korpuskel-Dualismus . . Springer Science and Business Media LLC . 136 . 3 . 1953 . 1434-6001 . 10.1007/bf01325679 . 251–261 . 1953ZPhy..136..251R . 123122734 . de.
  3. Louis de Broglie, The Current Interpretation of Wave Mechanics, (1964) Elsevier, Amsterdam. (Provides discussion of the Renninger experiment.)
  4. Dicke . R. H. . Robert H. Dicke. Interaction‐free quantum measurements: A paradox? . . American Association of Physics Teachers (AAPT) . 49 . 10 . 1981 . 0002-9505 . 10.1119/1.12592 . 925–930. 1981AmJPh..49..925D . (Provides a recent discussion of the Renninger experiment).
  5. Cramer . John G. . John G. Cramer. The transactional interpretation of quantum mechanics . . American Physical Society (APS) . 58 . 3 . 1986-07-01 . 0034-6861 . 10.1103/revmodphys.58.647 . 647–687. 1986RvMP...58..647C . https://web.archive.org/web/20051220195021/http://mist.npl.washington.edu/npl/int_rep/tiqm/TI_40.html. 2005-12-20. (Section 4.1 reviews Renninger's experiment).
  6. Paul G. Kwiat, The Tao of Quantum Interrogation, (2001).
  7. Sean M. Carroll, Quantum Interrogation, (2006).

External links