An integral bilinear form is a bilinear functional that belongs to the continuous dual space of
X\widehat{ ⊗ }\epsilonY
These maps play an important role in the theory of nuclear spaces and nuclear maps.
See also: Injective tensor product and Projective tensor product.
Let X and Y be locally convex TVSs, let
X ⊗ \piY
X\widehat{ ⊗ }\piY
X ⊗ \epsilonY
X\widehat{ ⊗ }\epsilonY
\operatorname{In}:X ⊗ \epsilonY\toX\widehat{ ⊗ }\epsilonY
X ⊗ \epsilonY
{}t\operatorname{In}:\left(X\widehat{ ⊗ }\epsilonY
\prime | |
\right) | |
b |
\to\left(X ⊗ \epsilonY
\prime | |
\right) | |
b |
X ⊗ \epsilonY
X\widehat{ ⊗ }\epsilonY
Let
\operatorname{Id}:X ⊗ \piY\toX ⊗ \epsilonY
{}t\operatorname{Id}:\left(X ⊗ \epsilonY
\prime | |
\right) | |
b |
\to\left(X ⊗ \piY
\prime | |
\right) | |
b |
\left(X ⊗ \piY\right)\prime
B(X,Y)
X x Y
X ⊗ \epsilonY
B(X,Y)
J(X,Y)
J(X,Y)
X x Y
There is also a closely related formulation of the theorem above that can also be used to explain the terminology integral bilinear form: a continuous bilinear form
u
X x Y
\Omega
\mu
\alpha
\beta
X
Y
Linfty(\Omega,\mu)
u(x,y)=\langle\alpha(x),\beta(y)\rangle=\int\Omega\alpha(x)\beta(y) d\mu
i.e., the form
u
A continuous linear map
\kappa:X\toY'
(x,y)\inX x Y\mapsto(\kappax)(y)
\kappa:X\toY'
x\inX\mapsto\kappa(x)=\intS\left\langlex',x\right\rangley'd\mu\left(x',y'\right)
X'
Y'
\mu
y\inY
Given a linear map
Λ:X\toY
BΛ\inBi\left(X,Y'\right)
X x Y'
BΛ\left(x,y'\right):=\left(y'\circΛ\right)\left(x\right)
Λ:X\toY
Λ:X\toY
x\inX
y'\inY'
\left\langley',Λ(x)\right\rangle=\intA'\left\langlex',x\right\rangle\left\langley'',y'\right\rangled\mu\left(x',y''\right)
A'
B''
X'
Y''
\mu
\leq1
The following result shows that integral maps "factor through" Hilbert spaces.
Proposition: Suppose that
u:X\toY
\alpha:X\toH
\beta:H\toY
u=\beta\circ\alpha
Furthermore, every integral operator between two Hilbert spaces is nuclear. Thus a continuous linear operator between two Hilbert spaces is nuclear if and only if it is integral.
Every nuclear map is integral. An important partial converse is that every integral operator between two Hilbert spaces is nuclear.
Suppose that A, B, C, and D are Hausdorff locally convex TVSs and that
\alpha:A\toB
\beta:B\toC
\gamma:C\toD
\beta:B\toC
\gamma\circ\beta\circ\alpha:A\toD
If
u:X\toY
u:X\toY
{}tu:Y'\toX'
Suppose that
u:X\toY
u:X\toY
{}tu:
\prime | |
Y | |
b |
\to
\prime | |
X | |
b |
{}tu:
\prime | |
Y | |
b |
\to
\prime | |
X | |
b |
u:X\toY
u:X\toY
\operatorname{In}X:X\toX''
x\mapsto
\operatorname{In}Y:Y\toY''
X
\prime | |
Y | |
b |
Suppose that A, B, C, and D are Hausdorff locally convex TVSs with B and D complete. If
\alpha:A\toB
\beta:B\toC
\gamma:C\toD
\gamma\circ\beta\circ\alpha:A\toD
u:X\toX