Instant Insanity is the name given by Parker Brothers to their 1967 version of a puzzle which has existed since antiquity, and which has been marketed by many toy and puzzle makers under a variety of names, including: Devil's Dice (Pressman); DamBlocks (Schaper); Logi-Qubes (Schaeffer); Logi Cubes (ThinkinGames); Daffy Dots (Reiss); Those Blocks (Austin); PsykoNosis (A to Z Ideas), and many others.[1]
The puzzle consists of four cubes with faces colored with four colors (commonly red, blue, green, and white). The objective of the puzzle is to stack these cubes in a column so that each side of the stack (front, back, left, and right) shows each of the four colors. The distribution of colors on each cube is unique, and the order in which the four cubes are stacked is irrelevant as long as each side shows every color.
This problem has a graph-theoretic solution in which a graph with four vertices labeled B, G, R, W (for blue, green, red, and white) can be used to represent each cube; there is an edge between two vertices if the two colors are on the opposite sides of the cube, and a loop at a vertex if the opposite sides have the same color. Each individual cube can be placed in one of 24 positions, by placing any one of the six faces upward and then giving the cube up to three quarter-turns. Once the stack is formed, it can be rotated up to three quarter-turns without altering the orientation of any cube relative to the others. Ignoring the order in which the cubes are stacked, the total possible number of arrangements is therefore 82,944 (24 * 24 * 24 * 24 / 4). The puzzle is studied by D. E. Knuth in an article on estimating the running time of exhaustive search procedures with backtracking.
Every position of the puzzle can be solved in eight moves or less.[2]
The first known patented version of the puzzle was created by Frederick A. Schossow in 1900, and marketed as the Katzenjammer puzzle.[3] The puzzle was recreated by Franz Owen Armbruster, also known as Frank Armbruster, and independently published by Parker Brothers and Pressman, in 1967. Over 12 million puzzles were sold by Parker Brothers alone. The puzzle is similar or identical to numerous other puzzles[4] (e.g., The Great Tantalizer, circa 1940, and the most popular name prior to Instant Insanity).
One version of the puzzle is currently being marketed by Winning Moves Games USA.
Given the already colored cubes and the four distinct colors are (Red, Green, Blue, White), we will try to generate a graph which gives a clear picture of all the positions of colors in all the cubes. The resultant graph will contain four vertices one for each color and we will number each edge from one through four (one number for each cube). If an edge connects two vertices (Red and Green) and the number of the edge is three, then it means that the third cube has Red and Green faces opposite to each other.
To find a solution to this problem we need the arrangement of four faces of each of the cubes. To represent the information of two opposite faces of all the four cubes we need a directed subgraph instead of an undirected one because two directions can only represent two opposite faces, but not whether a face should be at the front or at the back.
So if we have two directed subgraphs, we can actually represent all the four faces (which matter) of all the four cubes.
We cannot randomly select any two subgraphs - so what are the criteria for selecting?
We need to choose graphs such that:
After understanding these restrictions if we try to derive the two sub graphs, we may end up with one possible set as shown in Image 3. Each edge line style represents a cube.
The upper subgraph lets one derive the left and the right face colors of the corresponding cube. E.g.:
The lower subgraph lets one derive the front and the back face colors of the corresponding cube. E.g.:
The third image shows the derived stack of cube which is the solution to the problem.
It is important to note that:
Given n cubes, with the faces of each cube coloured with one of n colours, determining if it is possible to stack the cubes so that each colour appears exactly once on each of the 4 sides of the stack is NP-complete.[6] [7]
The cube stacking game is a two-player game version of this puzzle. Given an ordered list of cubes, the players take turns adding the next cube to the top of a growing stack of cubes. The loser is the first player to add a cube that causes one of the four sides of the stack to have a color repeated more than once. Robertson and Munro[8] proved that this game is PSPACE-complete, which illustrates the observation that NP-complete puzzles tend to lead to PSPACE-complete games.