Influenza A virus subtype H3N2 (A/H3N2) is a subtype of viruses that causes influenza (flu). H3N2 viruses can infect birds and mammals. In birds, humans, and pigs, the virus has mutated into many strains. In years in which H3N2 is the predominant strain, there are more hospitalizations.[1]
H3N2 is a subtype of the viral genus Influenzavirus A, which is an important cause of human influenza. Its name derives from the forms of the two kinds of proteins on the surface of its coat, hemagglutinin (H) and neuraminidase (N). By reassortment, H3N2 exchanges genes for internal proteins with other influenza subtypes.[2]
See main article: Seasonal influenza. Seasonal influenza kills an estimated 36,000 people in the United States each year. Flu vaccines are based on predicting which "mutants" of H1N1, H3N2, H1N2, and influenza B will proliferate in the next season. Separate vaccines are developed for the Northern and Southern Hemispheres in preparation for their annual epidemics. In the tropics, influenza shows no clear seasonality. In the past ten years, H3N2 has tended to dominate in prevalence over H1N1, H1N2, and influenza B. Measured resistance to the standard antiviral drugs amantadine and rimantadine in H3N2 has increased from 1% in 1994 to 12% in 2003 to 91% in 2005.[3]
Seasonal H3N2 flu is a human flu from H3N2 that is slightly different from one of the previous year's flu season H3N2 variants. Seasonal influenza viruses flow out of overlapping epidemics in East Asia and Southeast Asia, then trickle around the globe before dying off. Identifying the source of the viruses allows global health officials to better predict which viruses are most likely to cause the most disease over the next year. An analysis of 13,000 samples of influenza A/H3N2 virus that were collected across six continents from 2002 to 2007 by the WHO's Global Influenza Surveillance Network showed the newly emerging strains of H3N2 appeared in East and Southeast Asian countries about six to nine months earlier than anywhere else. The strains generally reached Australia and New Zealand next, followed by North America and Europe. The new variants typically reached South America after an additional six to nine months, the group reported.[4]
See main article: Swine influenza.
A 2007 study reported: "In swine, three influenza A virus subtypes (H1N1, H3N2, and H1N2) are circulating throughout the world. In the United States, the classic H1N1 subtype was exclusively prevalent among swine populations before 1998; however, since late August 1998, H3N2 subtypes have been isolated from pigs. Most H3N2 virus isolates are triple reassortants, containing genes from human (HA, NA, and PB1), swine (NS, NP, and M), and avian (PB2 and PA) lineages. Present vaccination strategies for swine influenza virus (SIV) control and prevention in swine farms typically include the use of one of several bivalent SIV vaccines commercially available in the United States. Of the 97 recent H3N2 isolates examined, only 41 had strong serologic cross-reactions with antiserum to three commercial SIV vaccines. Since the protective ability of influenza vaccines depends primarily on the closeness of the match between the vaccine virus and the epidemic virus, the presence of nonreactive H3N2 SIV variants suggests current commercial vaccines might not effectively protect pigs from infection with a majority of H3N2 viruses."[5]
Avian influenza virus H3N2 is endemic in pigs in China, and has been detected in pigs in Vietnam, contributing to the emergence of new variant strains. Pigs can carry human influenza viruses, which can combine (i.e. exchange homologous genome subunits by genetic reassortment) with H5N1, passing genes and mutating into a form which can pass easily among humans. H3N2 evolved from H2N2 by antigenic shift and caused the Hong Kong Flu pandemic of 1968 and 1969 that killed up to 750,000 humans. The dominant strain of annual flu in humans in January 2006 was H3N2. Measured resistance to the standard antiviral drugs amantadine and rimantadine in H3N2 in humans had increased to 91% by 2005. In August 2004, researchers in China found H5N1 in pigs.[6]
See main article: Hong Kong flu.
The Hong Kong Flu was a flu pandemic caused by a strain of H3N2 descended from H2N2 by antigenic shift, in which genes from multiple subtypes reassorted to form a new virus. This pandemic of 1968 and 1969 killed an estimated one million people worldwide.[7] [8] [9] The pandemic infected an estimated 500,000 Hong Kong residents, 15% of the population, with a low death rate.[10] In the United States, about 100,000 people died.[11]
Both the H2N2 and H3N2 pandemic flu strains contained genes from avian influenza viruses. The new subtypes arose in pigs coinfected with avian and human viruses and were soon transferred to humans. Swine were considered the original "intermediate host" for influenza, because they supported reassortment of divergent subtypes. However, other hosts appear capable of similar coinfection (e.g., many poultry species), and direct transmission of avian viruses to humans is possible. H1N1 may have been transmitted directly from birds to humans (Belshe 2005).[12]
The Hong Kong flu strain shared internal genes and the neuraminidase with the 1957 Asian flu (H2N2). Accumulated antibodies to the neuraminidase or internal proteins may have resulted in much fewer casualties than most pandemics. However, cross-immunity within and between subtypes of influenza is poorly understood.
The Hong Kong flu was the first known outbreak of the H3N2 strain, though there is serologic evidence of H3N2 infections in the late 19th century. The first record of the outbreak in Hong Kong appeared on 13 July 1968 in an area with a density of about 500 people per acre in an urban setting. The outbreak reached maximum intensity in two weeks, lasting six weeks in total. The virus was isolated in Queen Mary Hospital. Flu symptoms lasted four to five days.
By July 1968, extensive outbreaks were reported in Vietnam and Singapore. By September 1968, it reached India, the Philippines, northern Australia and Europe. That same month, the virus entered California from United States troops returning from the Vietnam War. It reached Japan, Africa and South America in 1969.
See main article: Fujian flu.
Fujian flu refers to flu caused by either a Fujian human flu strain of the H3N2 subtype or a Fujian bird flu strain of the H5N1 subtype of the Influenza A virus. These strains are named after Fujian province in China.
A/Fujian (H3N2) human flu (from A/Fujian/411/2002(H3N2)-like flu virus strains) caused an unusually severe 2003–2004 flu season. This was due to a reassortment event that caused a minor clade to provide a haemagglutinin gene that later became part of the dominant strain in the 2002–2003 flu season. A/Fujian (H3N2) was made part of the trivalent influenza vaccine for the 2004–2005 flu season.[13]