The Infeld–Van der Waerden symbols, sometimes called simply Van der Waerden symbols, are an invariant symbol associated to the Lorentz group used in quantum field theory. They are named after Leopold Infeld and Bartel Leendert van der Waerden.
The Infeld–Van der Waerden symbols are index notation for Clifford multiplication of covectors on left handed spinors giving a right-handed spinors or vice versa, i.e. they are off diagonal blocks of gamma matrices. The symbols are typically denoted in Van der Waerden notation asand so have one Lorentz index (m), one left-handed (undotted Greek), and one right-handed (dotted Greek) Weyl spinor index. They satisfy
(j,\bar{\jmath})
(\tfrac{1}{2},0)
(0,\tfrac{1}{2}),
while the tangent vectors live in the vector representation
(\tfrac{1}{2},\tfrac{1}{2}).
The tensor product of one left and right fundamental representation is the vector representation,
(\tfrac{1}{2},0) ⊗ (0,\tfrac{1}{2})=(\tfrac{1}{2},\tfrac{1}{2})
Consider the space of positive Weyl spinors
S
(T,g)
(T\vee,g\vee)
\barS\vee
\sigma:T\vee\toHom(S,\barS\vee)
\bar\sigma:T\vee\toHom(\barS\vee,S)
\sigma\inT ⊗ \barS\vee ⊗ S\vee\congHom(\barS ⊗ S,T)
\bar\sigma\inT ⊗ S ⊗ \barS\congHom(S\vee ⊗ \barS\vee,T)
That the Infeld–Van der Waerden maps implement "two halves of a Clifford algebra representation" means that for covectors
a,b\inT\vee
\bar\sigma(a)\sigma(b)+\bar\sigma(b)\sigma(a)=
\vee(a,b)1 | |
2g | |
S |
\sigma(a)\bar\sigma(b)+\sigma(b)\bar\sigma(a)=
\vee(a,b)1 | |
2g | |
\barS\vee |
\gamma=\begin{pmatrix}0&\bar\sigma\\\sigma&0\end{pmatrix}:T\vee\toEnd(S ⊕ \barS\vee)
\gamma(a)\gamma(b)+\gamma(b)\gamma(a)=
\vee(a,b)1 | |
2g | |
S ⊕ \barS\vee |
.
\gamma
Cl(T\vee,g\vee)\toEnd(S ⊕ \barS\vee)
The Infeld–Van der Waerden maps are real (or hermitian) in the sense that the complex conjugate dual maps
\sigma\dagger(a):S\to\limits\bar \barS
\sigma\vee(a) | |
\longrightarrow\limits |
S\vee\to\limits\bar \barS\vee
a
\sigma(a)=\sigma(\bara)\dagger
\bar\sigma(a)=\bar\sigma(\bara)\dagger
Now the Infeld the Infeld–Van der Waerden symbols are the components of the maps
\bar\sigma
\sigma
T
S
T\vee
\barS\vee
xm
m=0,\ldots,3
\partialm
T
dxm
T\vee
s\alpha
\alpha=0,1
S
s\alpha
S\vee
\bar
| |||
s |
\barS\vee
m)(s | |
\sigma(dx | |
\alpha) |
=
m | |||
\sigma | |||
|
\bar
| |||
s |
\bar\sigma(dxm)(\bar
| |||
s |
)=
| |||||
\bar\sigma |
s\beta
The
\sigma
\mu{} | |
e | |
m |
\mu{} | |||
\sigma | |||
|
In flat Minkowski space, A standard component representation is in terms of the Pauli matrices, hence the
\sigma