In graph theory, an induced matching or strong matching is a subset of the edges of an undirected graph that do not share any vertices (it is a matching) and these are the only edges connecting any two vertices which are endpoints of the matching edges (it is an induced subgraph).
An induced matching can also be described as an independent set in the square of the line graph of the given graph.
The minimum number of induced matchings into which the edges of a graph can be partitioned is called its strong chromatic index, by analogy with the chromatic index of the graph, the minimum number of matchings into which its edges can be partitioned. It equals the chromatic number of the square of the line graph. Brooks' theorem, applied to the square of the line graph,shows that the strong chromatic index is at most quadratic in the maximum degree of the given graph, but better constant factors in the quadratic bound can be obtained by other methods.
The Ruzsa–Szemerédi problem concerns the edge density of balanced bipartite graphs with linear strong chromatic index. Equivalently, it concerns the density of a different class of graphs, the locally linear graphs in which the neighborhood of every vertex is an induced matching. Neither of these types of graph can have a quadratic number of edges, but constructions are known for graphs of this type with nearly-quadratic numbers of edges.
Finding an induced matching of size at least
k
n1-\varepsilon
The problem is also W[1]-hard, meaning that even finding a small induced matching of a given size
k
k
k
n
O(1.3752n)
O(1.4231n)