Incomplete Fermi–Dirac integral explained

In mathematics, the incomplete Fermi-Dirac integral, named after Enrico Fermi and Paul Dirac, for an index

j

and parameter

b

is given by

\operatorname{F}j(x,b)\overset{def

} \frac \int_b^\infty\! \frac\;\mathrmt

Its derivative is

d
dx

\operatorname{F}j(x,b)=\operatorname{F}j-1(x,b)

and this derivative relationship may be used to find the value of the incomplete Fermi-Dirac integral for non-positive indices

j

.[1]

This is an alternate definition of the incomplete polylogarithm, since:

\operatorname{F}j(x,b)=

1
\Gamma(j+1)
infty
\int
b
tj
et-x+1

dt=

1
\Gamma(j+1)
infty
\int
b
tj
\displaystyle
et
ex
+1

dt=-

1
\Gamma(j+1)
infty
\int
b
tj
\displaystyle
et
-ex
-1

dt=-\operatorname{Li}j+1(b,-ex)

Which can be used to prove the identity:

\operatorname{F}j(x,b)=

infty
-\sum
n=1
(-1)n
nj+1
\Gamma(j+1,nb)
\Gamma(j+1)

enx

where

\Gamma(s)

is the gamma function and

\Gamma(s,y)

is the upper incomplete gamma function. Since

\Gamma(s,0)=\Gamma(s)

, it follows that:

\operatorname{F}j(x,0)=\operatorname{F}j(x)

where

\operatorname{F}j(x)

is the complete Fermi-Dirac integral.

Special values

The closed form of the function exists for

j=0

: [1]

\operatorname{F}0(x,b)=ln(1+ex-b)-(b-x)

See also

External links

Notes and References

  1. Guano . Michele . Algorithm 745: computation of the complete and incomplete Fermi-Dirac integral. . ACM Transactions on Mathematical Software . 1995 . 21 . 3 . 221–232 . 10.1145/210089.210090 . 26 June 2024.