In mathematics, the incomplete Fermi-Dirac integral, named after Enrico Fermi and Paul Dirac, for an index
j
b
\operatorname{F}j(x,b)\overset{def
Its derivative is
d | |
dx |
\operatorname{F}j(x,b)=\operatorname{F}j-1(x,b)
j
This is an alternate definition of the incomplete polylogarithm, since:
\operatorname{F}j(x,b)=
1 | |
\Gamma(j+1) |
infty | |
\int | |
b |
tj | |
et-x+1 |
dt=
1 | |
\Gamma(j+1) |
infty | |
\int | |
b |
tj | |||||
|
dt=-
1 | |
\Gamma(j+1) |
infty | |
\int | |
b |
tj | |||||
|
dt=-\operatorname{Li}j+1(b,-ex)
Which can be used to prove the identity:
\operatorname{F}j(x,b)=
infty | |
-\sum | |
n=1 |
(-1)n | |
nj+1 |
\Gamma(j+1,nb) | |
\Gamma(j+1) |
enx
\Gamma(s)
\Gamma(s,y)
\Gamma(s,0)=\Gamma(s)
\operatorname{F}j(x,0)=\operatorname{F}j(x)
where
\operatorname{F}j(x)
The closed form of the function exists for
j=0
\operatorname{F}0(x,b)=ln(1+ex-b)-(b-x)