In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.
The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:
Jv-1(z,w)-Jv+1(z,w)=2\dfrac{\partial}{\partialz}Jv(z,w)
Yv-1(z,w)-Yv+1(z,w)=2\dfrac{\partial}{\partialz}Yv(z,w)
Iv-1(z,w)+Iv+1(z,w)=2\dfrac{\partial}{\partialz}Iv(z,w)
Kv-1(z,w)+Kv+1(z,w)=-2\dfrac{\partial}{\partialz}Kv(z,w)
(1) | |
H | |
v-1 |
(1) | |
(z,w)-H | |
v+1 |
(z,w)=2\dfrac{\partial}{\partial
(1) | |
z}H | |
v |
(z,w)
(2) | |
H | |
v-1 |
(2) | |
(z,w)-H | |
v+1 |
(z,w)=2\dfrac{\partial}{\partial
(2) | |
z}H | |
v |
(z,w)
Jv-1(z,w)+Jv+1(z,w)=\dfrac{2v}{z}Jv(z,w)-\dfrac{2\tanhvw}{z}\dfrac{\partial}{\partialw}Jv(z,w)
Yv-1(z,w)+Yv+1(z,w)=\dfrac{2v}{z}Yv(z,w)-\dfrac{2\tanhvw}{z}\dfrac{\partial}{\partialw}Yv(z,w)
Iv-1(z,w)-Iv+1(z,w)=\dfrac{2v}{z}Iv(z,w)-\dfrac{2\tanhvw}{z}\dfrac{\partial}{\partialw}Iv(z,w)
Kv-1(z,w)-Kv+1(z,w)=-\dfrac{2v}{z}Kv(z,w)+\dfrac{2\tanhvw}{z}\dfrac{\partial}{\partialw}Kv(z,w)
(1) | |
H | |
v-1 |
(1) | |
(z,w)+H | |
v+1 |
(1) | |
(z,w)=\dfrac{2v}{z}H | |
v |
(z,w)-\dfrac{2\tanhvw}{z}\dfrac{\partial}{\partial
(1) | |
w}H | |
v |
(z,w)
(2) | |
H | |
v-1 |
(2) | |
(z,w)+H | |
v+1 |
(2) | |
(z,w)=\dfrac{2v}{z}H | |
v |
(z,w)-\dfrac{2\tanhvw}{z}\dfrac{\partial}{\partial
(2) | |
w}H | |
v |
(z,w)
w
Kv(z,w)=\int
infty | |
w |
e-z\cosh\coshvt~dt
Jv(z,w)=\int
we | |
0 |
-z\cosh\coshvt~dt
Jv(z,w)=J
| ||||
v(z)+\dfrac{e |
| ||||
J(iz,v,w)-e |
J(-iz,v,w)}{i\pi}
Yv(z,w)=Y
| ||||
v(z)+\dfrac{e |
| ||||
J(iz,v,w)+e |
J(-iz,v,w)}{\pi}
I-v(z,w)=Iv(z,w)
v
I-v(z,w)-Iv(z,w)=I-v(z)-Iv(z)-\dfrac{2\sinv\pi}{\pi}J(z,v,w)
Iv(z,w)=I
-v\pii | |
v(z)+\dfrac{J(-z,v,w)-e |
J(z,v,w)}{i\pi}
| ||||
I | ||||
v(z,w)=e |
Jv(iz,w)
K-v(z,w)=Kv(z,w)
Kv(z,w)=\dfrac{\pi}{2}\dfrac{I-v(z,w)-Iv(z,w)}{\sinv\pi}
v
(1) | |
H | |
v |
(z,w)=Jv(z,w)+iYv(z,w)
(2) | |
H | |
v |
(z,w)=Jv(z,w)-iYv(z,w)
(1) | |
H | |
-v |
(z,w)=ev\pi
(1) | |
H | |
v |
(z,w)
(2) | |
H | |
-v |
(z,w)=e-v\pi
(2) | |
H | |
v |
(z,w)
(1) | |
H | |
v |
(z,w)=\dfrac{J-v(z,w)-e-v\piJv(z,w)}{i\sinv\pi}=\dfrac{Y-v(z,w)-e-v\piYv(z,w)}{\sinv\pi}
v
(2) | |
H | |
v |
(z,w)=\dfrac{ev\piJv(z,w)-J-v(z,w)}{i\sinv\pi}=\dfrac{Y-v(z,w)-ev\piYv(z,w)}{\sinv\pi}
v
Kv(z,w)
z2\dfrac{d2y}{dz2}+z\dfrac{dy}{dz}-(x2+v2)y=(v\sinhvw+z\coshvw\sinhw)e-z\cosh
Jv(z,w)
Yv(z,w)
(1) | |
H | |
v |
(z,w)
(2) | |
H | |
v |
(z,w)
z2\dfrac{\partial2y}{\partialz2}+z\dfrac{\partialy}{\partialz}+(z2-v2)y-\dfrac{\partial2y}{\partialw2}+2v\tanhvw\dfrac{\partialy}{\partialw}=0
Iv(z,w)
Kv(z,w)
z2\dfrac{\partial2y}{\partialz2}+z\dfrac{\partialy}{\partialz}-(z2+v2)y-\dfrac{\partial2y}{\partialw2}+2v\tanhvw\dfrac{\partialy}{\partialw}=0
Base on the preliminary definitions above, one would derive directly the following integral forms of
Jv(z,w)
Yv(z,w)
\begin{align} Jv(z,w)&=Jv(z)+\dfrac{1}{\pi
we | |
i}\left(\int | |
0 |
| |||||
\cosh
we | |
vt~dt-\int | |
0 |
| ||||||
\coshvt~dt\right) \\&=Jv(z)+\dfrac{1}{\pi
w\cos\left(z\cosh | |
i}\left(\int | |
0 |
t-\dfrac{v\pi}{2}\right)\cosh
w\sin\left(z\cosh | |
vt~dt-i\int | |
0 |
t-\dfrac{v\pi}{2}\right)\cosh
w\cos\left(z\cosh | |
vt~dt\right.\\ & \left.-\int | |
0 |
t-\dfrac{v\pi}{2}\right)\cosh
w\sin\left(z\cosh | |
vt~dt-i\int | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt\right) \\&=Jv(z)+\dfrac{1}{\pi
w\sin\left(z\cosh | |
i}\left(-2i\int | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt\right) \\&=Jv(z)-\dfrac{2}{\pi}\int
w\sin\left(z\cosh | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt\end{align}
\begin{align} Yv(z,w)&=Yv(z)+\dfrac{1}{\pi}\left(\int
we | |
0 |
| |||||
\cosh
we | |
vt~dt+\int | |
0 |
| ||||||
\coshvt~dt\right) \\&=Yv(z)+\dfrac{1}{\pi}\left(\int
w\cos\left(z\cosh | |
0 |
t-\dfrac{v\pi}{2}\right)\cosh
w\sin\left(z\cosh | |
vt~dt-i\int | |
0 |
t-\dfrac{v\pi}{2}\right)\cosh
w\cos\left(z\cosh | |
vt~dt\right.\\ & \left.+\int | |
0 |
t-\dfrac{v\pi}{2}\right)\cosh
w\sin\left(z\cosh | |
vt~dt+i\int | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt\right) \\&=Yv(z)+\dfrac{2}{\pi}\int
w\cos\left(z\cosh | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt\end{align}
Jv(z)=\dfrac{2}{\pi}\int
infty\sin\left(z\cosh | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt
Yv(z)=-\dfrac{2}{\pi}\int
infty\cos\left(z\cosh | |
0 |
t-\dfrac{v\pi}{2}\right)\coshvt~dt
we can further simplify to
Jv(z,w)=\dfrac{2}{\pi}\int
infty\sin\left(z\cosh | |
w |
t-\dfrac{v\pi}{2}\right)\coshvt~dt
Yv(z,w)=-\dfrac{2}{\pi}\int
infty\cos\left(z\cosh | |
w |
t-\dfrac{v\pi}{2}\right)\coshvt~dt
|v|<1