List of implementations of differentially private analyses explained

Since the advent of differential privacy, a number of systems supporting differentially private data analyses have been implemented and deployed. This article tracks real-world deployments, production software packages, and research prototypes.

Real-world deployments

NameOrganizationYear IntroducedNotesStill in use?
OnTheMap: Interactive tool for exploration of US income and commute patterns.[1] [2] US Census Bureau2008First deployment of differential privacyYes
RAPPOR in Chrome Browser to collect security metrics[3] [4] Google2014First widespread use of local differential privacyNo
Emoji analytics; analytics. Improve: QuickType, emoji; Spotlight deep link suggestions; Lookup Hints in Notes. Emoji suggestions, health type usage estimates, Safari energy drain statistics, Autoplay intent detection (also in Safari)[5] Apple2017Yes
Application telemetry[6] Microsoft2017Application usage statistics Microsoft Windows.yes
Flex: A SQL-based system developed for internal Uber analytics[7] [8] Uber2017Unknown
2020 Census[9] US Census Bureau2018Yes
Audience Engagement API[10] LinkedIn2020Yes
Labor Market Insights[11] LinkedIn2020Yes
COVID-19 Community Mobility Reports[12] Google2020Unknown
Advertiser Queries[13] LinkedIn2020
U.S. Broadband Coverage Data Set[14] Microsoft2021Unknown
College Scorecard WebsiteIRS and Dept. of Education2021Unknown
Ohm Connect[15] Recurve2021
Live Birth Dataset[16] [17] Israeli Ministry of Health2024Yes

Production software packages

These software packages purport to be usable in production systems. They are split in two categories: those focused on answering statistical queries with differential privacy, and those focused on training machine learning models with differential privacy.

Statistical analyses

NameDeveloperYear IntroducedNotesStill maintained?
Google's differential privacy libraries[18] Google2019Building block libraries in Go, C++, and Java; end-to-end framework in Go,.[19] Yes
OpenDP[20] Harvard, Microsoft2020Core library in Rust,[21] SDK in Python with an SQL interface.Yes
Tumult Analytics[22] Tumult Labs[23] 2022Python library, running on Apache Spark.Yes
PipelineDP[24] Google, OpenMined[25] 2022Python library, running on Apache Spark, Apache Beam, or locally.Yes
PSI (Ψ): A Private data Sharing InterfaceHarvard University Privacy Tools Project.[26] 2016No
TopDown Algorithm[27] United States Census Bureau2020Production code used in the 2020 US Census.No

Machine learning

NameDeveloperYear IntroducedNotesStill maintained?
Diffprivlib[28] IBM[29] 2019Python library.Yes
TensorFlow Privacy[30] [31] Google2019Differentially private training in TensorFlow.Yes
Opacus[32] Meta2020Differentially private training in PyTorch.Yes

Research projects and prototypes

NameCitationYear PublishedNotes
PINQ: An API implemented in C#.[33] 2010
Airavat: A MapReduce-based system implemented in Java hardened with SELinux-like access control.[34] 2010
Fuzz: Time-constant implementation in Caml Light of a domain-specific language.[35] 2011
GUPT: Implementation of the sample-and-aggregate framework.[36] 2012

\epsilon

KTELO: A framework and system for answering linear counting queries.
[37] 2018

See also

References

  1. Web site: OnTheMap. onthemap.ces.census.gov. 29 March 2023.
  2. Book: Machanavajjhala . Ashwin . Kifer . Daniel . Abowd . John . Gehrke . Johannes . Vilhuber . Lars . 2008 IEEE 24th International Conference on Data Engineering . Privacy: Theory meets Practice on the Map . 277–286 . April 2008 . 10.1109/ICDE.2008.4497436. 978-1-4244-1836-7 . 5812674 .
  3. Web site: Erlingsson . Úlfar . Learning statistics with privacy, aided by the flip of a coin .
  4. Book: Erlingsson . Úlfar . Pihur . Vasyl . Korolova . Aleksandra . Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security . RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response . November 2014 . 1054–1067 . 10.1145/2660267.2660348. 2014arXiv1407.6981E . 1407.6981 . 9781450329576 . 6855746 .
  5. Differential Privacy Team . Learning with Privacy at Scale . Apple Machine Learning Journal . December 2017 . 1 . 8 .
  6. Ding . Bolin . Kulkarni . Janardhan . Yekhanin . Sergey . Collecting Telemetry Data Privately . 31st Conference on Neural Information Processing Systems . December 2017 . 3574–3583. 2017arXiv171201524D . 1712.01524 .
  7. Web site: Tezapsidis . Katie . Uber Releases Open Source Project for Differential Privacy . Jul 13, 2017.
  8. Johnson . Noah . Near . Joseph P. . Song . Dawn . Towards Practical Differential Privacy for SQL Queries . Proceedings of the VLDB Endowment . January 2018 . 11 . 5 . 526–539 . 10.1145/3187009.3177733. 1706.09479 .
  9. Book: Abowd . John M. . Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . The U.S. Census Bureau Adopts Differential Privacy . August 2018 . 2867 . 10.1145/3219819.3226070. 9781450355520 . https://digitalcommons.ilr.cornell.edu/ldi/49 . 1813/60392 . 51711121 . free .
  10. 2002.05839 . Rogers . Ryan . Subramaniam . Subbu . Peng . Sean . Durfee . David . Lee . Seunghyun . Santosh Kumar Kancha . Sahay . Shraddha . Ahammad . Parvez . LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale . 2020 . cs.CR .
  11. 2010.13981 . Rogers . Ryan . Adrian Rivera Cardoso . Mancuhan . Koray . Kaura . Akash . Gahlawat . Nikhil . Jain . Neha . Ko . Paul . Ahammad . Parvez . A Members First Approach to Enabling LinkedIn's Labor Market Insights at Scale . 2020 . cs.CR .
  12. 2004.04145 . Aktay . Ahmet . Bavadekar . Shailesh . Cossoul . Gwen . Davis . John . Desfontaines . Damien . Fabrikant . Alex . Gabrilovich . Evgeniy . Gadepalli . Krishna . Gipson . Bryant . Guevara . Miguel . Kamath . Chaitanya . Kansal . Mansi . Lange . Ali . Mandayam . Chinmoy . Oplinger . Andrew . Pluntke . Christopher . Roessler . Thomas . Schlosberg . Arran . Shekel . Tomer . Vispute . Swapnil . Vu . Mia . Wellenius . Gregory . Williams . Brian . Royce J Wilson . Google COVID-19 Community Mobility Reports: Anonymization Process Description (Version 1.1) . 2020 . cs.CR .
  13. 2002.05839. Rogers. Ryan. Subbu. Subramaniam. Sean. Peng. David. Durfee. Seunghyun. Lee. Santosh Kumar. Kancha. Shraddha. Sahay. Parvez. Ahammad. LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale. 2020. cs.CR .
  14. 2103.14035 . Pereira . Mayana . Kim . Allen . Allen . Joshua . White . Kevin . Juan Lavista Ferres . Dodhia . Rahul . U.S. Broadband Coverage Data Set: A Differentially Private Data Release . 2021 . cs.CR .
  15. Web site: EDP. EDP. 29 March 2023.
  16. 2405.00267. Hod. Shlomi. Canetti. Ran. Differentially Private Release of Israel's National Registry of Live Births. 2024. cs.CR .
  17. Web site: Live Birth Dataset (Hebrew). data.gov.il. 2 May 2024.
  18. Web site: Google's differential privacy libraries . . 3 February 2023 .
  19. Web site: Differential-privacy/Privacy-on-beam at main · google/Differential-privacy . .
  20. Web site: OpenDP. opendp.org. 29 March 2023.
  21. Web site: OpenDP Library . .
  22. Web site: Tumult Analytics. www.tmlt.dev. 29 March 2023.
  23. Web site: Tumult Labs | Privacy Protection Redefined. www.tmlt.io. 29 March 2023.
  24. Web site: PipelineDP. pipelinedp.io. 29 March 2023.
  25. Web site: OpenMined. www.openmined.org. 29 March 2023.
  26. Web site: Gaboardi . Marco . Honaker . James . King . Gary . Nissim . Kobbi . Ullman . Jonathan . Vadhan . Salil . Murtagh . Jack . PSI (Ψ): a Private data Sharing Interface . June 2016.
  27. Web site: DAS 2020 Redistricting Production Code Release . . 22 June 2022 .
  28. Web site: Diffprivlib v0.5 . . 17 October 2022 .
  29. 1907.02444 . Holohan . Naoise . Braghin . Stefano . Pól Mac Aonghusa . Levacher . Killian . Diffprivlib: The IBM Differential Privacy Library . 2019 . cs.CR .
  30. Web site: Radebaugh . Carey . Erlingsson . Ulfar . Introducing TensorFlow Privacy: Learning with Differential Privacy for Training Data . March 6, 2019.
  31. Web site: TensorFlow Privacy . GitHub. 2019-08-09.
  32. Web site: Opacus · Train PyTorch models with Differential Privacy. opacus.ai. 29 March 2023.
  33. McSherry . Frank . Privacy integrated queries . Communications of the ACM . 1 September 2010 . 53 . 9 . 89–97 . 10.1145/1810891.1810916 . 52898716 .
  34. Roy . Indrajit . Setty . Srinath T.V. . Kilzer . Ann . Shmatikov . Vitaly . Witchel . Emmett . Airavat: Security and Privacy for MapReduce . Proceedings of the 7th Usenix Symposium on Networked Systems Design and Implementation (NSDI) . April 2010 .
  35. Haeberlen . Andreas . Pierce . Benjamin C. . Narayan . Arjun . Differential Privacy Under Fire . 20th USENIX Security Symposium . 2011.
  36. Book: Mohan . Prashanth . Thakurta . Abhradeep . Shi . Elaine . Elaine Shi . Song . Dawn . Culler . David E. . GUPT: Privacy Preserving Data Analysis Made Easy . Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data . 349–360 . 10.1145/2213836.2213876. 2135755 .
  37. Book: Zhang . Dan . McKenna . Ryan . Kotsogiannis . Ios . Hay . Michael . Machanavajjhala . Ashwin . Miklau . Gerome . Proceedings of the 2018 International Conference on Management of Data . EKTELO: A Framework for Defining Differentially-Private Computations . June 2018 . 115–130 . 10.1145/3183713.3196921. 1808.03555 . 9781450347037 . 5033862 .