List of implementations of differentially private analyses explained
Since the advent of differential privacy, a number of systems supporting differentially private data analyses have been implemented and deployed. This article tracks real-world deployments, production software packages, and research prototypes.
Real-world deployments
Name | Organization | Year Introduced | Notes | Still in use? |
---|
OnTheMap: Interactive tool for exploration of US income and commute patterns.[1] [2] | US Census Bureau | 2008 | First deployment of differential privacy | Yes |
RAPPOR in Chrome Browser to collect security metrics[3] [4] | Google | 2014 | First widespread use of local differential privacy | No |
Emoji analytics; analytics. Improve: QuickType, emoji; Spotlight deep link suggestions; Lookup Hints in Notes. Emoji suggestions, health type usage estimates, Safari energy drain statistics, Autoplay intent detection (also in Safari)[5] | Apple | 2017 | | Yes |
Application telemetry[6] | Microsoft | 2017 | Application usage statistics Microsoft Windows. | yes |
Flex: A SQL-based system developed for internal Uber analytics[7] [8] | Uber | 2017 | | Unknown |
2020 Census[9] | US Census Bureau | 2018 | | Yes |
Audience Engagement API[10] | LinkedIn | 2020 | | Yes |
Labor Market Insights[11] | LinkedIn | 2020 | | Yes |
COVID-19 Community Mobility Reports[12] | Google | 2020 | | Unknown |
Advertiser Queries[13] | LinkedIn | 2020 | |
U.S. Broadband Coverage Data Set[14] | Microsoft | 2021 | | Unknown |
College Scorecard Website | IRS and Dept. of Education | 2021 | | Unknown |
Ohm Connect[15] | Recurve | 2021 | | |
Live Birth Dataset[16] [17] | Israeli Ministry of Health | 2024 | | Yes | |
Production software packages
These software packages purport to be usable in production systems. They are split in two categories: those focused on answering statistical queries with differential privacy, and those focused on training machine learning models with differential privacy.
Statistical analyses
Name | Developer | Year Introduced | Notes | Still maintained? |
---|
Google's differential privacy libraries[18] | Google | 2019 | Building block libraries in Go, C++, and Java; end-to-end framework in Go,.[19] | Yes |
OpenDP[20] | Harvard, Microsoft | 2020 | Core library in Rust,[21] SDK in Python with an SQL interface. | Yes |
Tumult Analytics[22] | Tumult Labs[23] | 2022 | Python library, running on Apache Spark. | Yes |
PipelineDP[24] | Google, OpenMined[25] | 2022 | Python library, running on Apache Spark, Apache Beam, or locally. | Yes |
PSI (Ψ): A Private data Sharing Interface | Harvard University Privacy Tools Project.[26] | 2016 | | No |
TopDown Algorithm[27] | United States Census Bureau | 2020 | Production code used in the 2020 US Census. | No |
|
Machine learning
Research projects and prototypes
Name | Citation | Year Published | Notes |
---|
PINQ: An API implemented in C#. | [33] | 2010 | |
Airavat: A MapReduce-based system implemented in Java hardened with SELinux-like access control. | [34] | 2010 | |
Fuzz: Time-constant implementation in Caml Light of a domain-specific language. | [35] | 2011 | |
GUPT: Implementation of the sample-and-aggregate framework. | [36] | 2012 | |
KTELO: A framework and system for answering linear counting queries. | [37] | 2018 | | |
See also
References
- Web site: OnTheMap. onthemap.ces.census.gov. 29 March 2023.
- Book: Machanavajjhala . Ashwin . Kifer . Daniel . Abowd . John . Gehrke . Johannes . Vilhuber . Lars . 2008 IEEE 24th International Conference on Data Engineering . Privacy: Theory meets Practice on the Map . 277–286 . April 2008 . 10.1109/ICDE.2008.4497436. 978-1-4244-1836-7 . 5812674 .
- Web site: Erlingsson . Úlfar . Learning statistics with privacy, aided by the flip of a coin .
- Book: Erlingsson . Úlfar . Pihur . Vasyl . Korolova . Aleksandra . Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security . RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response . November 2014 . 1054–1067 . 10.1145/2660267.2660348. 2014arXiv1407.6981E . 1407.6981 . 9781450329576 . 6855746 .
- Differential Privacy Team . Learning with Privacy at Scale . Apple Machine Learning Journal . December 2017 . 1 . 8 .
- Ding . Bolin . Kulkarni . Janardhan . Yekhanin . Sergey . Collecting Telemetry Data Privately . 31st Conference on Neural Information Processing Systems . December 2017 . 3574–3583. 2017arXiv171201524D . 1712.01524 .
- Web site: Tezapsidis . Katie . Uber Releases Open Source Project for Differential Privacy . Jul 13, 2017.
- Johnson . Noah . Near . Joseph P. . Song . Dawn . Towards Practical Differential Privacy for SQL Queries . Proceedings of the VLDB Endowment . January 2018 . 11 . 5 . 526–539 . 10.1145/3187009.3177733. 1706.09479 .
- Book: Abowd . John M. . Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . The U.S. Census Bureau Adopts Differential Privacy . August 2018 . 2867 . 10.1145/3219819.3226070. 9781450355520 . https://digitalcommons.ilr.cornell.edu/ldi/49 . 1813/60392 . 51711121 . free .
- 2002.05839 . Rogers . Ryan . Subramaniam . Subbu . Peng . Sean . Durfee . David . Lee . Seunghyun . Santosh Kumar Kancha . Sahay . Shraddha . Ahammad . Parvez . LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale . 2020 . cs.CR .
- 2010.13981 . Rogers . Ryan . Adrian Rivera Cardoso . Mancuhan . Koray . Kaura . Akash . Gahlawat . Nikhil . Jain . Neha . Ko . Paul . Ahammad . Parvez . A Members First Approach to Enabling LinkedIn's Labor Market Insights at Scale . 2020 . cs.CR .
- 2004.04145 . Aktay . Ahmet . Bavadekar . Shailesh . Cossoul . Gwen . Davis . John . Desfontaines . Damien . Fabrikant . Alex . Gabrilovich . Evgeniy . Gadepalli . Krishna . Gipson . Bryant . Guevara . Miguel . Kamath . Chaitanya . Kansal . Mansi . Lange . Ali . Mandayam . Chinmoy . Oplinger . Andrew . Pluntke . Christopher . Roessler . Thomas . Schlosberg . Arran . Shekel . Tomer . Vispute . Swapnil . Vu . Mia . Wellenius . Gregory . Williams . Brian . Royce J Wilson . Google COVID-19 Community Mobility Reports: Anonymization Process Description (Version 1.1) . 2020 . cs.CR .
- 2002.05839. Rogers. Ryan. Subbu. Subramaniam. Sean. Peng. David. Durfee. Seunghyun. Lee. Santosh Kumar. Kancha. Shraddha. Sahay. Parvez. Ahammad. LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale. 2020. cs.CR .
- 2103.14035 . Pereira . Mayana . Kim . Allen . Allen . Joshua . White . Kevin . Juan Lavista Ferres . Dodhia . Rahul . U.S. Broadband Coverage Data Set: A Differentially Private Data Release . 2021 . cs.CR .
- Web site: EDP. EDP. 29 March 2023.
- 2405.00267. Hod. Shlomi. Canetti. Ran. Differentially Private Release of Israel's National Registry of Live Births. 2024. cs.CR .
- Web site: Live Birth Dataset (Hebrew). data.gov.il. 2 May 2024.
- Web site: Google's differential privacy libraries . . 3 February 2023 .
- Web site: Differential-privacy/Privacy-on-beam at main · google/Differential-privacy . .
- Web site: OpenDP. opendp.org. 29 March 2023.
- Web site: OpenDP Library . .
- Web site: Tumult Analytics. www.tmlt.dev. 29 March 2023.
- Web site: Tumult Labs | Privacy Protection Redefined. www.tmlt.io. 29 March 2023.
- Web site: PipelineDP. pipelinedp.io. 29 March 2023.
- Web site: OpenMined. www.openmined.org. 29 March 2023.
- Web site: Gaboardi . Marco . Honaker . James . King . Gary . Nissim . Kobbi . Ullman . Jonathan . Vadhan . Salil . Murtagh . Jack . PSI (Ψ): a Private data Sharing Interface . June 2016.
- Web site: DAS 2020 Redistricting Production Code Release . . 22 June 2022 .
- Web site: Diffprivlib v0.5 . . 17 October 2022 .
- 1907.02444 . Holohan . Naoise . Braghin . Stefano . Pól Mac Aonghusa . Levacher . Killian . Diffprivlib: The IBM Differential Privacy Library . 2019 . cs.CR .
- Web site: Radebaugh . Carey . Erlingsson . Ulfar . Introducing TensorFlow Privacy: Learning with Differential Privacy for Training Data . March 6, 2019.
- Web site: TensorFlow Privacy . GitHub. 2019-08-09.
- Web site: Opacus · Train PyTorch models with Differential Privacy. opacus.ai. 29 March 2023.
- McSherry . Frank . Privacy integrated queries . Communications of the ACM . 1 September 2010 . 53 . 9 . 89–97 . 10.1145/1810891.1810916 . 52898716 .
- Roy . Indrajit . Setty . Srinath T.V. . Kilzer . Ann . Shmatikov . Vitaly . Witchel . Emmett . Airavat: Security and Privacy for MapReduce . Proceedings of the 7th Usenix Symposium on Networked Systems Design and Implementation (NSDI) . April 2010 .
- Haeberlen . Andreas . Pierce . Benjamin C. . Narayan . Arjun . Differential Privacy Under Fire . 20th USENIX Security Symposium . 2011.
- Book: Mohan . Prashanth . Thakurta . Abhradeep . Shi . Elaine . Elaine Shi . Song . Dawn . Culler . David E. . GUPT: Privacy Preserving Data Analysis Made Easy . Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data . 349–360 . 10.1145/2213836.2213876. 2135755 .
- Book: Zhang . Dan . McKenna . Ryan . Kotsogiannis . Ios . Hay . Michael . Machanavajjhala . Ashwin . Miklau . Gerome . Proceedings of the 2018 International Conference on Management of Data . EKTELO: A Framework for Defining Differentially-Private Computations . June 2018 . 115–130 . 10.1145/3183713.3196921. 1808.03555 . 9781450347037 . 5033862 .