In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, modulo p, p2, p3, and so on.
For a prime number p let K be a p-adic field, i.e.
[K:Qp]<infty
z\inK
\operatorname{ord}(z)
\midz\mid=q-\operatorname{ord(z)}
ac(z)=z\pi-\operatorname{ord(z)}
Furthermore let
\phi:Kn\toC
\chi
R x
f(x1,\ldots,xn)\inK[x1,\ldots,xn]
Z\phi(s,\chi)=
\int | |
Kn |
\phi(x1,\ldots,xn)\chi(ac(f(x1,\ldots,xn)))|f(x1,\ldots,x
s | |
n)| |
dx
where
s\inC,\operatorname{Re}(s)>0,
Rn
showed that
Z\phi(s,\chi)
t=q-s
Henceforth we take
\phi
Rn
\chi
Ni
f(x1,\ldots,xn)\equiv0\modPi
Then the Igusa zeta function
Z(t)=
\int | |
Rn |
|f(x1,\ldots,x
s | |
n)| |
dx
is closely related to the Poincaré series
P(t)=
infty | |
\sum | |
i=0 |
q-inNiti
by
P(t)=
1-tZ(t) | |
1-t |
.