Ideal (ring theory) explained
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.
Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime factorization for the ideals of a Dedekind domain (a type of ring important in number theory).
The related, but distinct, concept of an ideal in order theory is derived from the notion of ideal in ring theory. A fractional ideal is a generalization of an ideal, and the usual ideals are sometimes called integral ideals for clarity.
History
Ernst Kummer invented the concept of ideal numbers to serve as the "missing" factors in number rings in which unique factorization fails; here the word "ideal" is in the sense of existing in imagination only, in analogy with "ideal" objects in geometry such as points at infinity.[1] In 1876, Richard Dedekind replaced Kummer's undefined concept by concrete sets of numbers, sets that he called ideals, in the third edition of Dirichlet's book Vorlesungen über Zahlentheorie, to which Dedekind had added many supplements.[2] [3] Later the notion was extended beyond number rings to the setting of polynomial rings and other commutative rings by David Hilbert and especially Emmy Noether.
Definitions
Given a ring, a left ideal is a subset of that is a subgroup of the additive group of
that "absorbs multiplication from the left by elements of "; that is,
is a left ideal if it satisfies the following two conditions:
is a
subgroup of,
- For every
and every, the product
is in .
In other words, a left ideal is a left submodule of, considered as a left module over itself.
A right ideal is defined similarly, with the condition
replaced by . A
two-sided ideal is a left ideal that is also a right ideal.
If the ring is commutative, the three definitions are the same, and one talks simply of an ideal. In the non-commutative case, "ideal" is often used instead of "two-sided ideal".
If is a left, right or two-sided ideal, the relation
is an
equivalence relation on, and the set of
equivalence classes forms a left, right or two-sided module denoted
and called the
quotient of by . (This is a generalization of
modular arithmetic.)
If the ideal is two-sided,
is a ring, and the function
that associates to each element of its equivalence class is a
surjective ring homomorphism that has the ideal as its
kernel. Conversely, the kernel of a ring homomorphism is a two-sided ideal. Therefore,
the two-sided ideals are exactly the kernels of ring homomorphisms.Note on convention
By convention, a ring has the multiplicative identity. But some authors do not require a ring to have the multiplicative identity; i.e., for them, a ring is a rng. For a rng, a left ideal is a subrng with the additional property that
is in for every
and every
. (Right and two-sided ideals are defined similarly.) For a ring, an ideal (say a left ideal) is rarely a subring; since a subring shares the same multiplicative identity with the ambient ring, if were a subring, for every
, we have
i.e.,
.
The notion of an ideal does not involve associativity; thus, an ideal is also defined for non-associative rings (often without the multiplicative identity) such as a Lie algebra.
Examples and properties
(For the sake of brevity, some results are stated only for left ideals but are usually also true for right ideals with appropriate notation changes.)
- In a ring R, the set R itself forms a two-sided ideal of R called the unit ideal. It is often also denoted by
since it is precisely the two-sided ideal generated (see below) by the unity . Also, the set
consisting of only the additive identity 0
R forms a two-sided ideal called the
zero ideal and is denoted by .
[4] Every (left, right or two-sided) ideal contains the zero ideal and is contained in the unit ideal.
- An (left, right or two-sided) ideal that is not the unit ideal is called a proper ideal (as it is a proper subset). Note: a left ideal
is proper if and only if it does not contain a unit element, since if
is a unit element, then
for every . Typically there are plenty of proper ideals. In fact, if
R is a
skew-field, then
are its only ideals and conversely: that is, a nonzero ring
R is a skew-field if
are the only left (or right) ideals. (Proof: if
is a nonzero element, then the principal left ideal
(see below) is nonzero and thus
; i.e.,
for some nonzero . Likewise,
for some nonzero
. Then
.)
- The even integers form an ideal in the ring
of all integers, since the sum of any two even integers is even, and the product of any integer with an even integer is also even; this ideal is usually denoted by . More generally, the set of all integers divisible by a fixed integer
is an ideal denoted . In fact, every non-zero ideal of the ring
is generated by its smallest positive element, as a consequence of
Euclidean division, so
is a
principal ideal domain.
- The set of all polynomials with real coefficients that are divisible by the polynomial
is an ideal in the ring of all real-coefficient polynomials .
and positive integer . For each, the set of all
matrices with entries in
whose
-th row is zero is a right ideal in the ring
of all
matrices with entries in . It is not a left ideal. Similarly, for each, the set of all
matrices whose
-th
column is zero is a left ideal but not a right ideal.
of all
continuous functions
from
to
under
pointwise multiplication contains the ideal of all continuous functions
such that . Another ideal in
is given by those functions that vanish for large enough arguments, i.e. those continuous functions
for which there exists a number
such that
whenever .
- A ring is called a simple ring if it is nonzero and has no two-sided ideals other than . Thus, a skew-field is simple and a simple commutative ring is a field. The matrix ring over a skew-field is a simple ring.
- If
is a
ring homomorphism, then the kernel
is a two-sided ideal of . By definition,, and thus if
is not the zero ring (so), then
is a proper ideal. More generally, for each left ideal
I of
S, the pre-image
is a left ideal. If
I is a left ideal of
R, then
is a left ideal of the subring
of
S: unless
f is surjective,
need not be an ideal of
S; see also
- Extension and contraction of an ideal
below.
- Ideal correspondence: Given a surjective ring homomorphism, there is a bijective order-preserving correspondence between the left (resp. right, two-sided) ideals of
containing the kernel of
and the left (resp. right, two-sided) ideals of
: the correspondence is given by
and the pre-image . Moreover, for commutative rings, this bijective correspondence restricts to prime ideals, maximal ideals, and radical ideals (see the Types of ideals section for the definitions of these ideals).
- (For those who know modules) If M is a left R-module and
a subset, then the
annihilator \operatorname{Ann}R(S)=\{r\inR\midrs=0,s\inS\}
of
S is a left ideal. Given ideals
of a commutative ring
R, the
R-annihilator of
is an ideal of
R called the
ideal quotient of
by
and is denoted by ; it is an instance of
idealizer in commutative algebra.
be an
ascending chain of left ideals in a ring
R; i.e.,
is a totally ordered set and
for each . Then the union
is a left ideal of
R. (Note: this fact remains true even if
R is without the unity 1.)
- The above fact together with Zorn's lemma proves the following: if
is a possibly empty subset and
is a left ideal that is disjoint from
E, then there is an ideal that is maximal among the ideals containing
and disjoint from
E. (Again this is still valid if the ring
R lacks the unity 1.) When
, taking
and, in particular, there exists a left ideal that is maximal among proper left ideals (often simply called a maximal left ideal); see
Krull's theorem for more.
- An arbitrary union of ideals need not be an ideal, but the following is still true: given a possibly empty subset X of R, there is the smallest left ideal containing X, called the left ideal generated by X and is denoted by . Such an ideal exists since it is the intersection of all left ideals containing X. Equivalently,
is the set of all the
(finite) left R-linear combinations of elements of
X over
R:
RX=\{r1x1+...+rnxn\midn\inN,ri\inR,xi\inX\}.
(since such a span is the smallest left ideal containing X.)[5] A right (resp. two-sided) ideal generated by X is defined in the similar way. For "two-sided", one has to use linear combinations from both sides; i.e.,
RXR=\{r1x1s1+...+rnxnsn\midn\inN,ri\inR,si\inR,xi\inX\}.
- A left (resp. right, two-sided) ideal generated by a single element x is called the principal left (resp. right, two-sided) ideal generated by x and is denoted by
(resp.). The principal two-sided ideal
is often also denoted by . If
is a finite set, then
is also written as .
- There is a bijective correspondence between ideals and congruence relations (equivalence relations that respect the ring structure) on the ring: Given an ideal
of a ring, let
if . Then
is a congruence relation on . Conversely, given a congruence relation
on, let . Then
is an ideal of .
Types of ideals
To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles.
Ideals are important because they appear as kernels of ring homomorphisms and allow one to define factor rings. Different types of ideals are studied because they can be used to construct different types of factor rings.
- Maximal ideal: A proper ideal is called a maximal ideal if there exists no other proper ideal J with a proper subset of J. The factor ring of a maximal ideal is a simple ring in general and is a field for commutative rings.[6]
- Minimal ideal: A nonzero ideal is called minimal if it contains no other nonzero ideal.
- Prime ideal: A proper ideal
is called a
prime ideal if for any
and
in, if
is in, then at least one of
and
is in . The factor ring of a prime ideal is a
prime ring in general and is an
integral domain for commutative rings.
- Radical ideal or semiprime ideal: A proper ideal is called radical or semiprime if for any a in R, if an is in for some n, then a is in . The factor ring of a radical ideal is a semiprime ring for general rings, and is a reduced ring for commutative rings.
- Primary ideal: An ideal is called a primary ideal if for all a and b in R, if ab is in, then at least one of a and bn is in for some natural number n. Every prime ideal is primary, but not conversely. A semiprime primary ideal is prime.
- Principal ideal: An ideal generated by one element.
- Finitely generated ideal: This type of ideal is finitely generated as a module.
- Primitive ideal: A left primitive ideal is the annihilator of a simple left module.
- Irreducible ideal: An ideal is said to be irreducible if it cannot be written as an intersection of ideals that properly contain it.
- Comaximal ideals: Two ideals, are said to be comaximal if
for some
and .
is called a
perfect ideal if its
grade equals the projective dimension of the associated quotient ring,
[7] . A perfect ideal is unmixed.
- Unmixed ideal: A proper ideal in a Noetherian ring
is called an
unmixed ideal (in height) if the height of
I is equal to the height of every
associated prime P of
R/
I. (This is stronger than saying that
R/
I is
equidimensional. See also equidimensional ring.
Two other important terms using "ideal" are not always ideals of their ring. See their respective articles for details:
- Fractional ideal: This is usually defined when R is a commutative domain with quotient field K. Despite their names, fractional ideals are R submodules of K with a special property. If the fractional ideal is contained entirely in R, then it is truly an ideal of R.
- Invertible ideal: Usually an invertible ideal A is defined as a fractional ideal for which there is another fractional ideal B such that . Some authors may also apply "invertible ideal" to ordinary ring ideals A and B with in rings other than domains.
Ideal operations
The sum and product of ideals are defined as follows. For
and, left (resp. right) ideals of a ring
R, their sum is
ak{a}+ak{b}:=\{a+b\mida\inak{a}andb\inak{b}\}
,which is a left (resp. right) ideal,and, if
are two-sided,
ak{a}ak{b}:=\{a1b1+...+anbn\midai\inak{a}andbi\inak{b},i=1,2,...,n;forn=1,2,...\},
i.e. the product is the ideal generated by all products of the form
ab with
a in
and
b in .
Note
is the smallest left (resp. right) ideal containing both
and
(or the union), while the product
is contained in the intersection of
and .
The distributive law holds for two-sided ideals,
If a product is replaced by an intersection, a partial distributive law holds:
ak{a}\cap(ak{b}+ak{c})\supsetak{a}\capak{b}+ak{a}\capak{c}
where the equality holds if
contains
or
.
Remark: The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a complete modular lattice. The lattice is not, in general, a distributive lattice. The three operations of intersection, sum (or join), and product make the set of ideals of a commutative ring into a quantale.
If
are ideals of a commutative ring
R, then
ak{a}\capak{b}=ak{a}ak{b}
in the following two cases (at least)
is generated by elements that form a
regular sequence modulo .(More generally, the difference between a product and an intersection of ideals is measured by the
Tor functor: .)
An integral domain is called a Dedekind domain if for each pair of ideals
, there is an ideal
such that . It can then be shown that every nonzero ideal of a Dedekind domain can be uniquely written as a product of maximal ideals, a generalization of the
fundamental theorem of arithmetic.
Examples of ideal operations
In
we have
(n)\cap(m)=\operatorname{lcm}(n,m)Z
since
is the set of integers that are divisible by both
and .
Let
and let . Then,
ak{a}+ak{b}=(z,w,x+z,y+w)=(x,y,z,w)
and
ak{a}ak{b}=(z(x+z),z(y+w),w(x+z),w(y+w))=(z2+xz,zy+wz,wx+wz,wy+w2)
ak{a}ak{c}=(xz+z2,zw,xw+zw,w2)
ak{a}\capak{b}=ak{a}ak{b}
while
ak{a}\capak{c}=(w,xz+z2) ≠ ak{a}ak{c}
In the first computation, we see the general pattern for taking the sum of two finitely generated ideals, it is the ideal generated by the union of their generators. In the last three we observe that products and intersections agree whenever the two ideals intersect in the zero ideal. These computations can be checked using Macaulay2.
[8] [9] [10] Radical of a ring
See main article: Radical of a ring.
Ideals appear naturally in the study of modules, especially in the form of a radical.
For simplicity, we work with commutative rings but, with some changes, the results are also true for non-commutative rings.
of
R is the intersection of all primitive ideals. Equivalently,
} \mathfrak.Indeed, if
is a simple module and
x is a nonzero element in
M, then
and
R/\operatorname{Ann}(M)=R/\operatorname{Ann}(x)\simeqM
, meaning
is a maximal ideal. Conversely, if
is a maximal ideal, then
is the annihilator of the simple
R-module . There is also another characterization (the proof is not hard):
J=\{x\inR\mid1-yxisaunitelementforeveryy\inR\}.
For a not-necessarily-commutative ring, it is a general fact that
is a
unit element if and only if
is (see the link) and so this last characterization shows that the radical can be defined both in terms of left and right primitive ideals.
The following simple but important fact (Nakayama's lemma) is built-in to the definition of a Jacobson radical: if M is a module such that, then M does not admit a maximal submodule, since if there is a maximal submodule,
and so, a contradiction. Since a nonzero
finitely generated module admits a maximal submodule, in particular, one has:
If
and
M is finitely generated, then .
A maximal ideal is a prime ideal and so one has
\operatorname{nil}(R)=
capak{pprimeideals
} \mathfrak \subset \operatorname(R)where the intersection on the left is called the
nilradical of
R. As it turns out,
is also the set of
nilpotent elements of
R.
If R is an Artinian ring, then
is nilpotent and . (Proof: first note the DCC implies
for some
n. If (DCC)
ak{a}\supsetneq\operatorname{Ann}(Jn)
is an ideal properly minimal over the latter, then
J ⋅ (ak{a}/\operatorname{Ann}(Jn))=0
. That is,, a contradiction.)
Extension and contraction of an ideal
Let A and B be two commutative rings, and let f : A → B be a ring homomorphism. If
is an ideal in
A, then
need not be an ideal in
B (e.g. take
f to be the
inclusion of the ring of integers
Z into the field of rationals
Q). The
extension
of
in
B is defined to be the ideal in
B generated by . Explicitly,
ak{a}e=\{\sumyif(xi):xi\inak{a},yi\inB\}
If
is an ideal of
B, then
is always an ideal of
A, called the
contraction
of
to
A.
Assuming f : A → B is a ring homomorphism,
is an ideal in
A,
is an ideal in
B, then:
is prime in
B
is prime in
A.
It is false, in general, that
being prime (or maximal) in
A implies that
is prime (or maximal) in
B. Many classic examples of this stem from algebraic number theory. For example,
embedding . In
B=Z\left\lbracki\right\rbrack
, the element 2 factors as
where (one can show) neither of
are units in
B. So
is not prime in
B (and therefore not maximal, as well). Indeed,
shows that,, and therefore .
On the other hand, if f is surjective and
then:
and .
is a
prime ideal in
A
is a prime ideal in
B.
is a
maximal ideal in
A
is a maximal ideal in
B.
of
A under extension is one of the central problems of
algebraic number theory.
The following is sometimes useful: a prime ideal
is a contraction of a prime ideal if and only if . (Proof: Assuming the latter, note
} = B_ \Rightarrow \mathfrak^e intersects, a contradiction. Now, the prime ideals of
} correspond to those in
B that are disjoint from . Hence, there is a prime ideal
of
B, disjoint from, such that
} is a maximal ideal containing . One then checks that
lies over . The converse is obvious.)
Generalizations
Ideals can be generalized to any monoid object, where
is the object where the
monoid structure has been
forgotten. A
left ideal of
is a
subobject
that "absorbs multiplication from the left by elements of "; that is,
is a
left ideal if it satisfies the following two conditions:
is a
subobject of
- For every
and every, the product
is in .
A right ideal is defined with the condition "" replaced by "'". A two-sided ideal is a left ideal that is also a right ideal, and is sometimes simply called an ideal. When
is a commutative monoid object respectively, the definitions of left, right, and two-sided ideal coincide, and the term
ideal is used alone.
An ideal can also be thought of as a specific type of -module. If we consider
as a left
-module (by left multiplication), then a left ideal
is really just a left sub-module of . In other words,
is a left (right) ideal of
if and only if it is a left (right)
-module that is a subset of .
is a two-sided ideal if it is a sub-
-bimodule of .
Example: If we let, an ideal of
is an abelian group that is a subset of, i.e.
for some . So these give all the ideals of .
See also
References
- Book: Atiyah . Michael F. . Michael Atiyah . Macdonald . Ian G. . Ian G. Macdonald . . Perseus Books . 1969 . 0-201-00361-9.
- Book: Dummit . David Steven . Foote . Richard Martin . Abstract algebra . 2004 . John Wiley & Sons, Inc. . Hoboken, NJ . 9780471433347 . Third.
- Book: Lang, Serge . Serge Lang . Undergraduate Algebra . Third . . 978-0-387-22025-3 . 2005 .
- Book: Michiel . Hazewinkel . Michiel Hazewinkel . Nadiya . Gubareni . Nadezhda Mikhaĭlovna . Gubareni . Vladimir V. . Kirichenko . Algebras, rings and modules . 1 . Springer . 2004 . 1-4020-2690-0.
- Book: Milnor . John Willard . John Milnor . Introduction to algebraic K-theory . Annals of Mathematics Studies . 72 . . Princeton, NJ . 1971 . 9780691081014 . 0349811 . 0237.18005.
External links
Notes and References
- Book: John Stillwell. Mathematics and its history. 2010. 439.
- Book: Harold M. Edwards. Fermat's last theorem. A genetic introduction to algebraic number theory. 1977. 76.
- Book: Everest G., Ward T.. An introduction to number theory. 2005. 83.
- Some authors call the zero and unit ideals of a ring R the trivial ideals of R.
- If R does not have a unit, then the internal descriptions above must be modified slightly. In addition to the finite sums of products of things in X with things in R, we must allow the addition of n-fold sums of the form, and n-fold sums of the form for every x in X and every n in the natural numbers. When R has a unit, this extra requirement becomes superfluous.
- Because simple commutative rings are fields. See Book: Lam. 2001. [{{Google books|plainurl=y|id=f15FyZuZ3-4C|page=39|text=simple commutative rings}} A First Course in Noncommutative Rings]. 39.
- Book: Matsumura, Hideyuki . Hideyuki Matsumura . 1987 . Commutative Ring Theory . Cambridge . Cambridge University Press . 132 . 9781139171762.
- Web site: ideals. www.math.uiuc.edu. 2017-01-14. https://web.archive.org/web/20170116190119/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_ideals.html. 2017-01-16. dead.
- Web site: sums, products, and powers of ideals. www.math.uiuc.edu. 2017-01-14. https://web.archive.org/web/20170116185903/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html. 2017-01-16. dead.
- Web site: intersection of ideals. www.math.uiuc.edu. 2017-01-14. https://web.archive.org/web/20170116185829/http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.9.2/share/doc/Macaulay2/Macaulay2Doc/html/_intersection_spof_spideals.html. 2017-01-16. dead.