bgcolor=#e7dcc3 colspan=3 | Icosahedral pyramid | ||
---|---|---|---|
align=center colspan=3 | Schlegel diagram | ||
Type | Polyhedral pyramid | ||
Schläfli symbol | ∨ | ||
Cells | 21 | ||
Faces | 50 | 20+30 | |
Edges | 12+30 | ||
Vertices | 13 | ||
Dual | Dodecahedral pyramid | ||
Symmetry group | H3, [5,3,1], order 120 | ||
Properties | convex, regular-cells, Blind polytope |
The regular 600-cell has icosahedral pyramids around every vertex.
The dual to the icosahedral pyramid is the dodecahedral pyramid, seen as a dodecahedral base, and 12 regular pentagonal pyramids meeting at an apex.
Seen in a configuration matrix, all incidence counts between elements are shown.
k-faces | fk | f0 | f1 | f2 | f3 | k-verfs | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
align=left bgcolor=#ffffe0 | ( ) | f0 | 1 | 12 | 0 | 30 | 0 | 20 | 0 | ||
align=left bgcolor=#ffffe0 | ( ) | 12 | 1 | 5 | 5 | 5 | 5 | 1 | ∨( ) | ||
align=left bgcolor=#ffffe0 | ( )∨( ) | f1 | 1 | 1 | 12 | 5 | 0 | 5 | 0 | ||
align=left bgcolor=#ffffe0 | 0 | 2 | 30 | 1 | 2 | 2 | 1 | ∨( ) | |||
align=left bgcolor=#ffffe0 | ∨( ) | f2 | 1 | 2 | 2 | 1 | 30 | 2 | 0 | ||
align=left bgcolor=#ffffe0 | 0 | 3 | 0 | 3 | 20 | 1 | 1 | ( )∨( ) | |||
align=left bgcolor=#ffffe0 | ∨( ) | f3 | 1 | 3 | 3 | 3 | 3 | 1 | 20 | ( ) | |
align=left bgcolor=#ffffe0 | 0 | 12 | 0 | 30 | 0 | 20 | 1 | ( ) |