Ice road explained

An ice road or ice bridge is a human-made structure that runs on a frozen water surface (a river, a lake or a sea water expanse).[1] [2] [3] Ice roads are typically part of a winter road, but they can also be simple stand-alone structures, connecting two shorelines.[4] [5] Ice roads may be planned, built and maintained so as to remain safe and effective, and a number of guidelines have been published with information in these regards.[6] [7] [8] [9] An ice road may be constructed year after year, for instance to service community needs during the winter.[10] It could also be for a single year or two, so as to supply particular operations, such as a hydroelectric project[11] or offshore drill sites.[12]

Ice bearing capacity

The ability of an ice road to safely support the weight of a vehicle (or any other loads applied onto it), referred to as bearing capacity, is the primary concern when designing, building and using that structure. Generally speaking, a vertically loaded ice cover will react in two ways: 1) it will sink, and 2) it will bend in flexure. In order to meet the ice bearing criteria, the top surface should not sink below the water line and the applied flexural stress should not exceed the ice's flexural strength. Three loading regimes have to be considered: a) maximum weight for standard usage or for parking during a short duration; b) a load that remains stationary during an extensive time period; and c) dynamic loading of the ice cover, from a traveling vehicle.

Maximum weight

For standard traffic activities, guidelines typically use a simple empirical formula to determine the maximum vehicle weight that should be allowed on an ice road.[13] This formula, which was initially proposed in 1971,[14] is often referred to as Gold's formula:

P=Ah2

where P is the load, h is the thickness and A is a constant with a unit of pressure. It may be linked with an idealized elastic response of the ice cover:

\sigmamax=CP/h2orCP=\sigmamaxh2

where σmax is the maximum tensile strength at the bottom of an infinite ice plate resting on an elastic foundation. The parameter C is based on the theory of thick plates. Hence, with this idealized formulation, A is representative of the ice cover tensile strength. Although recommended values for A range from 3.5 to 10 kg/cm2 (~ 50–150 lbs/in2), lower bound values are generally those that are used for safety purposes. This level of conservatism is justified because, unlike human-made materials such as steel or concrete, natural ice covers inherently contain a large amount of structural flaws (fractures, water and air pockets). Moreover, for a public road, which is relatively uncontrolled, such an approach introduces a high safety factor against breakthroughs and is therefore desirable. For industrial roads, the design may be less conservative so as to handle their functional requirements, i.e. higher A values can be used, but under the close supervision of a professional engineer.

Maximum loading time

When using Gold's formula, a purely elastic response is assumed, which is, by definition, instantaneous and independent of loading time. Ice, however, naturally exists at a high homologous temperature, i.e. near its melting point. As is the case for any other material under these conditions, response to loading is not only elastic, but incorporates other components, namely:[15] [16]

  1. A time-dependent recoverable component – this causes the development of microcracks, which can lead to fracturing and, ultimately, a breakthrough;
  2. A time-dependent irrecoverable component – this is commonly referred to as creep, which is related with the mechanisms responsible for glacier flow (long term) and plays a negligible role in the response of an ice road to loading.

Thus, an ice cover may be able to safely support a vehicle, but if it remains on the ice for too long, deformation will continue via microcracking, leading to the collapse of the ice cover below the vehicle. Recommendations vary as to how this can be avoided. Some sources prescribe a maximum of two hours for a stationary load,[17] [18] which is also what Gold recommended. Others advise to use the freeboard of the ice as an indicator, which can be done by drilling a hole in it and monitoring the distance between the water in the hole and the ice surface. The vehicle should be removed before the water reaches the surface in that hole. Another reason why the amount of freeboard matters is that if the water makes its way onto the ice surface (through cracks and fissures), the ice cover's bearing capacity diminishes rapidly, which can accelerate breakthrough.[19] For long-term loads, a professional engineer may have to be consulted.

Dynamic loading

As a vehicle travels on the road, a dynamic loading regime is exerted onto the ice cover. Below a specific speed, referred to as critical, the ice cover beneath the vehicle will assume the shape of a bowl moving with the vehicle, pushing away the water around it, as the keel of a boat does. At (and above) the critical speed, a series of waves will form behind and in front of the vehicle. "If the celerity of these waves is the same as the vehicle speed, the deflection and the stresses in the ice sheet are amplified, similar to resonance in an oscillating system" (pp. 8–10). The critical speed depends on ice thickness and water depth. Another issue that arises is the reflection of these waves from the shoreline back toward the vehicle. This can induce additional stresses on the ice – one way to mitigate this issue is to avoid approaching shorelines at 90 degrees. The critical speed is what determines the speed limit for vehicles traveling on ice roads. That limit can be as low as 10km/h to 35km/h. Dynamic loading of the ice cover may also dictate a minimum distance between vehicles.

Field testing has been conducted to better understand this dynamics.[20] [21] [22] Compelling evidence of such wave patterns was captured by satellite imagery.[23]

Planning and construction

When an ice road is part of a winter road, as is commonly the case, its design and construction is comprised within the overall road planning, i.e. in conjunction with the over-land segments. Either way, factors that need to be addressed before construction include the following:

Factors that need to be considered in route selection include the following:

Before first access to the ice, the following factors need to be considered:

Snow cover removal is the first major operation in an ice road construction scheme. It may only begin once the ice thickness is safe to support the machinery used for that operation. There are two ways of doing it, depending on available equipment and state of practice for that particular road. One is to pack the snow layer with tracked vehicles into a thin layer, thereby increasing its density and reducing its insulating properties. The other is to remove it altogether, typically with vehicles fitted with a snowplow.

Once the ice has reached the target thickness (via accelerated growth after removing the insulating effects of the snow), road construction per se may commence. At that point, the ice is able to safely support the heavier equipment required for that phase, which mostly consists of artificial thickening using a pump or a spraying system. The aim is to bring the thickness up to what is required for the heaviest vehicles that are anticipated when the ice road opens.

Usage and maintenance

Vehicles traveling on an ice road include ordinary automobiles and trucks of various sizes and weights. Standard winter tires are sufficient, i.e. cleats and tire chains can damage the road surface.[24] However, tire chains may be stored in the vehicle for emergency purposes; they can also come in handy when traveling on a winter road with grades steeper than 8% on over-land segments.[25] Signage may indicate speed limits, for instance a maximum of 25km/h, and spacing between vehicles, for instance 500m (1,600feet) for loads more than 12500kg (27,600lb). These restrictions are to decrease the risks of damage to the ice cover, which would compromise its ability to support the weight it has been designed for.

Maintenance comprises two main tasks:

Road closure

An ice road will typically be closed as a result of deterioration of the running or operating surface, before there is any risk of ice cover failure. Surface deterioration can happen when the ice surface becomes too soft, or because of an excessive amount of meltwater on its surface. Mid-season road closures can also happen for similar reasons, and also because of inclement weather, such as a blizzard. If the ice road is part of a winter road, then closure can also be due to an over-land segment that has become unserviceable.

Ice road reinforcement

Ice crossings can be made to support higher loads if they are reinforced, and there are a number of ways this has been done in the past.[26] [27] Also, these structures are vulnerable to a warming climate.[28] [29] The main reason is that in order to achieve a safe ice thickness before construction begins, and with progressively warmer weather in the fall season, the road opens later, thereby shortening the structure's operational window. Moreover, if the ice road is part of a winter road network, ice reinforcement can be used to address problematic segments, such as creek crossings or landings.

Media references

See also

External links

Notes and References

  1. Masterson, D. and Løset, S., 2011, ISO 19906: Bearing capacity of ice and ice roads, Proceedings of the 21st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Montreal, Canada.
  2. Proskin, S.A. and Fitzgerald, A., 2019, Using a limit states approach for ice road design, GeoSt.John's, St. John's.
  3. Spencer, P. and Wang, R., 2018, The design width of floating ice roads and effect of longitudinal cracks, Proceedings of the Arctic Technology Conference (ATC), Houston.
  4. Michel, B., Drouin, M., Lefebvre, L.M., Rosenberg, P. and Murray, R., 1974, Ice bridges of the James Bay Project. Canadian Geotechnical Journal, 11, pp. 599–619.
  5. Goff, R.D. and Masterson, D.M., 1986, Construction of a sprayed ice island for exploration, Proceedings of the 5th International Conference on Offshore Mechanics and Arctic Engineering (OMAE). The American Society of Mechanical Engineers (ASME), Tokyo, pp. 105–112.
  6. CRREL, 2006, Ice Engineering Manual. EM 1110-2-1612. Department of the Army, U.S. Army Corps of Engineers. New Jersey, 475 pp.
  7. Government of the NWT, 2015, Guidelines for safe ice construction. Department of Transportation. Yellowknife, Canada, 44 pp.
  8. Fransson, L., 2009, Ice Handbook for Engineers. Luleå Tekniska Universitet.
  9. Barrette, P.D., 2015, Overview of ice roads in Canada: Design, usage and climate change adaptation. OCRE-TR-2015-011. National Research Council of Canada, https://nrc-publications.canada.ca/eng/view/object/?id=5984226f-bee8-48fe-a138-5a23c800f435. Ottawa, 51 pp.
  10. Government of Saskatchewan, 2010, Winter roads handbook. Ministry of Highways and Infrastructure, Regina.
  11. Michel, B., Drouin, M., Lefebvre, L.M., Rosenberg, P. and Murray, R., 1974. Ice bridges in the James Project. Canadian Geotechnical Journal, 11: 599–619.
  12. Finucane, R.G. and Scher, R.L., 1983, Floating ice road construction. Journal of Energy Resources Technology, Transactions of the ASME, 105(1), pp. 26–29.
  13. Barrette, P.D., 2015, A review of guidelines on ice roads in Canada: Determination of bearing capacity, Transportation Association of Canada (TAC), Charlottetown, PEI.
  14. Gold, L.W., 1971, Use of ice covers for transportation. Canadian Geotechnical Journal, 8, pp. 170–181.
  15. Sinha, N.K. and Cai, B., 1996, Elasto-delayed-elastic simulation of short-term deflection of fresh-water ice covers. Cold Regions Science and Technology, 24, pp. 221–235.
  16. Sinha, N.K., 2003, Viscous and delayed-elastic deformation during primary creep - Using strain relaxation and recovery test. Scripta Materialia, 48, pp. 1507–1512.
  17. CSST, 1996, Travaux sur les champs de glace. DC 200-640 (96-12). Gouvernement du Québec, 39 pp.
  18. Infrastructure Health and Safety Association, 2014, Best practices for building and working safely on ice covers in Ontario. Mississauga, Ontario, 44 pp.
  19. Masterson, D.M., 2009, State of the art of ice bearing capacity and ice construction. Cold Regions Science and Technology, 58, pp. 99–112.
  20. Beltaos, S., 1981, Field studies on the response of floating ice sheets to moving loads. Canadian Journal of Civil Engineering, 8, pp. 1–8.
  21. Takizawa, T., 1988, Response of a floating ice sheet to a steadily moving load. Journal of Geophysical Research, 93(C5), pp. 5100–5112.
  22. Van Der Vinne, G., Lanteigne, M. and Snyder, J., 2017, Measurement of ice covers under moving loads, 19th Workshop on the Hydraulics of Ice Covered Rivers. CGU HS Committee on River Ice Processes and the Environment (CRIPE), Whitehorse, Canada.
  23. van der Sanden, J.J. and Short, N.H., 2016, – satellites measure ice cover displacements induced by moving vehicles. Cold Regions Science and Technology, 133, pp. 56–62.
  24. Web site: Gee . Marcus . The thin white line: How Northern Ontario's winter roads are built and kept safe to drive . The Globe and Mail . April 11, 2022 . en-CA . 23 February 2020.
  25. Proskin, S., Groznic, E., Hayley, D., Mathison, F., McGregor, R. and Neth, V., 2011, Guidelines for the construction and operation of winter roads. Transportation Association of Canada.
  26. Goncharova . G. Yu. . Borzov . S. S. . Borschev . G. V. . 2023-07-13 . New technologies of ice roads construction to maintain the sustainable cold chain of supply in the northern regions of Russia . Food systems . 6 . 2 . 245–254 . 10.21323/2618-9771-2023-6-2-245-254 . 2618-7272. free .
  27. Bosnjak . J. . Coko . N.B.. Jurcevic . M.. Klarin . B.. Nizetic . S.. 2023-12-04 . Use of reinforced ice as alternative building material in cold regions: an overview . Archives of Thermodynamics . 10.24425/ather.2023.147547 . 1231-0956. free .
  28. Hori, Y., and Gough, W. A., 2018, "The state of Canadian winter roads south of the 60th parallel: historical climate analysis and projected future changes based on the climate model projections", Indigenous and Northern Affairs, Toronto.
  29. Kuloglu, T. Z., 2020, "Climate change impacts on logging operations and winter roads: Costs and mitigation strategies", University of Alberta, Edmonton," Indigenous and Northern Affairs, Toronto.