Ian Grant (physicist) explained
Ian Philip Grant, DPhil; FRS; CMath; FIMA, FRAS, FInstP [1] (born 15 December 1930) is a British mathematical physicist. He is Emeritus Professor of Mathematical Physics at the University of Oxford and was elected a fellow of the Royal Society in 1992.[2] He is a pioneer in the field of computational physics and is internationally recognised as the principal author of GRASP, the General Relativistic Atomic Structure Program.
Education
St Albans School, Hertfordshire (1939-1948). Open Scholar in Natural Science, Wadham College Oxford, MA (Mathematics) (1951). Clarendon Laboratory, University of Oxford, D.Phil (1954).
Career
Source:
UKAEA. Mathematical Physics Division, Aldermaston. Senior Scientific officer (1957-1962); Principal Scientific Officer (1962-1964).
Joint Research Fellowship, Atlas Computer Laboratory (Science Research Council) and Pembroke College, Oxford. (1964-1969)
Tutorial Fellow in Mathematics, Pembroke College, Oxford, now Emeritus Fellow. (1969-1998)
Professor of Mathematical Physics, University of Oxford, now Emeritus Professor.(1992-1998)
Visiting Professor, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. (2013-)
Academic Research
Source:[3] [4]
Professor Ian Grant has made fundamental contributions to the development of the mathematical theory on relativistic effects in atomic physics, of importance for detailed studies of all atomic systems and particularly for heavy atoms and for highly ionised atoms in laboratory and astronomical plasmas. He has also been instrumental in the creation of computer codes[5] that are used worldwide (in particular GRASP)[6] [7] [8] [9] and have had a major impact on the understanding of both the foundations of the relativistic theory of many electron systems and on the precision of theoretical interpretation of a variety of properties of atoms. Professor Grant and his co-workers extended this approach to the relativistic modelling of molecular electronic structure and the development of the BERTHA computer package.[10] Further research work included studies of electron scattering from heavy atoms and of the structures of molecules containing heavy atoms, culminating in the creation of the DARC computer package, integrating modules designed for calculations using relativistic R-matrix approach and GRASP.[11] [12] He also led important earlier work on radiative transfer in stellar and planetary atmospheres.[13] [14] [15]
Professor Grant’s book Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation[16] [17] reviews the field of relativistic atomic and molecular structure to the mid-2000s.
References
- Web site: Grant, Prof. Ian Philip, (born 15 Dec. 1930), Professor of Mathematical Physics, University of Oxford, 1992–98, now Emeritus Professor; Tutorial Fellow in Mathematics, Pembroke College, Oxford, 1969–98, now Emeritus Fellow; Visiting Professor, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, since 2013. 2021-01-10. WHO'S WHO & WHO WAS WHO. 2007. en. 10.1093/ww/9780199540884.013.U17859. 978-0-19-954088-4 .
- Web site: Ian Grant Royal Society. 2021-01-10. royalsociety.org. en-gb.
- Karwowski. Jacek. July 2001. Ian P. Grant, FRS — a biographical note. Computer Physics Communications. 138. 1. 10–17. 10.1016/s0010-4655(01)00246-6. 2001CoPhC.138...10K. 0010-4655.
- Web site: Grant. Ian. 2013. Professor Ian P Grant - CV (Biographical Note).
- Scott. T.C.. Monagan. M.B.. Grant. I.P.. Saunders. V.R.. 1997. Numerical computation of molecular integrals via optimized (vectorized) FORTRAN code. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 389. 1. 117–120. 10.1016/S0168-9002(97)00059-4. 1997NIMPA.389..117S . 0168-9002.
- Grant. I.P.. McKenzie. B.J.. Norrington. P.H.. Mayers. D.F.. Pyper. N.C.. December 1980. An atomic multiconfigurational Dirac-Fock package. Computer Physics Communications. 21. 2. 207–231. 10.1016/0010-4655(80)90041-7. 1980CoPhC..21..207G. 0010-4655.
- Dyall. K.G.. Grant. I.P.. Johnson. C.T.. Parpia. F.A.. Plummer. E.P.. October 1989. GRASP: A general-purpose relativistic atomic structure program. Computer Physics Communications. 55. 3. 425–456. 10.1016/0010-4655(89)90136-7. 1989CoPhC..55..425D. 0010-4655.
- Jönsson. P.. He. X.. Froese Fischer. C.. Grant. I.P.. October 2007. The grasp2K relativistic atomic structure package. Computer Physics Communications. 177. 7. 597–622. 10.1016/j.cpc.2007.06.002. 2007CoPhC.177..597J. 0010-4655.
- Jönsson. P.. Gaigalas. G.. Bieroń. J.. Fischer. C. Froese. Grant. I.P.. September 2013. New version: Grasp2K relativistic atomic structure package. Computer Physics Communications. 184. 9. 2197–2203. 10.1016/j.cpc.2013.02.016. 2013CoPhC.184.2197J. 0010-4655. 2043/16226. free.
- Book: Quiney. H. M.. Ab initio relativistic quantum chemistry: four-components good, two-components bad!**With apologies to George Orwell [1]. 1998-01-01. http://www.sciencedirect.com/science/article/pii/S0065327608604050. 32. 1–49. Löwdin. Per-Olov. Academic Press. en. 10.1016/s0065-3276(08)60405-0. 2021-01-11. Skaane. H.. Grant. I. P.. Ab initio relativistic quantum chemistry: Four-components good, two-components bad! . Advances in Quantum Chemistry . 9780120348336 .
- Norrington. P H. Grant. I P. 1981-04-14. Electron scattering from Ne II using the relativistic R-matrix method. Journal of Physics B: Atomic and Molecular Physics. 14. 7. L261–L267. 10.1088/0022-3700/14/7/006. 1981JPhB...14L.261N. 0022-3700.
- Norrington. P H. Grant. I P. 1987-09-28. Low-energy electron scattering by Fe XXIII and Fe VII using the Dirac R-matrix method. Journal of Physics B: Atomic and Molecular Physics. 20. 18. 4869–4881. 10.1088/0022-3700/20/18/023. 1987JPhB...20.4869N. 0022-3700.
- Grant. Ian Philip. Hunt. G. E.. Flowers. Brian Hilton. 1969-10-21. Discrete space theory of radiative transfer I. Fundamentals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 313. 1513. 183–197. 10.1098/rspa.1969.0187. 1969RSPSA.313..183G. 123320528.
- Grant. Ian Philip. Hunt. G. E.. Flowers. Brian Hilton. 1969-10-21. Discrete space theory of radiative transfer II. Stability and non-negativity. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 313. 1513. 199–216. 10.1098/rspa.1969.0188. 1969RSPSA.313..199G. 121094462.
- Grant. I. P.. Peraiah. A.. 1972-11-01. Spectral Line Formation in Extended Stellar Atmospheres. Monthly Notices of the Royal Astronomical Society. 160. 3. 239–247. 10.1093/mnras/160.3.239. 1972MNRAS.160..239G. 0035-8711. free.
- Book: Grant, I. P.. Relativistic quantum theory of atoms and molecules : theory and computation. 2007. Springer. 978-0-387-35069-1. New York. 186506935.
- Johnson. Walter. January 2008. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, I. P. Grant, Springer, New York, 2007. $199.00 (797 pp.). ISBN 978-0387-34671-7. Physics Today. 61. 1. 62. 10.1063/1.2835158. 0031-9228. free.