ERN1 explained

The serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1 α (IRE1α) is an enzyme that in humans is encoded by the ERN1 gene.[1] [2]

Function

The protein encoded by this gene is the ER to nucleus signalling 1 protein, a human homologue of the yeast Ire1 gene product. This protein possesses intrinsic kinase activity and an endoribonuclease activity and it is important in altering gene expression as a response to endoplasmic reticulum-based stress signals (mainly the unfolded protein response). Two alternatively spliced transcript variants encoding different isoforms have been found for this gene.

Signaling

IRE1α possesses two functional enzymatic domains, an endonuclease and a trans-autophosphorylation kinase domain. Upon activation, IRE1α oligomerizes and carries out an unconventional RNA splicing activity, removing an intron from the X-box binding protein 1 (XBP1) mRNA, and allowing it to become translated into a functional transcription factor, XBP1s.[3] XBP1s upregulates ER chaperones and endoplasmic reticulum associated degradation (ERAD) genes that facilitate recovery from ER stress.

Clinical significance

As IRE1α is a primary sensor for unfolded protein response, its disruption could be linked with neurodegenerative diseases, by which the accumulation of intracellular toxic proteins serves as one of the key pathogenic mechanisms.[4] IRE1 signalling is considered to be pathogenic in Alzheimer's disease,[5] Parkinson's disease[6] and amyotrophic lateral sclerosis.[7] [8]

Interactions

ERN1 has been shown to interact with Heat shock protein 90kDa alpha (cytosolic), member A1.[9]

Inhibitors

Two types of inhibitors exist targeting either the catalytic core of the RNase domain or the ATP-binding pocket of the kinase domain.

RNase domain inhibitors

Salicylaldehydes (3-methoxy-6-bromosalicylaldehyde,[10] 4μ8C,[11] MKC-3946,[12] STF-083010,[13] toyocamycin.[14]

ATP-binding pocket

Sunitinib and APY29 inhibit the ATP-binding pocket but allosterically activate the IRE1α RNase domain.

Compound 3 prevents kinase activity, oligomerization and RNase activity.[15]

Specific roles in the brain

Apart from its function as the main regulator of cellular stress and the Unfolded Protein Response pathway, IRE1α also has its non-canonical roles in the brain. For one, it has been shown to act as a scaffold, which recruits and regulates filamin A. This way, IRE1α controls cytoskeletal remodeling and cell migration during brain development. [16] Additionally, IRE1α regulates protein synthesis rates in the developing murine cortex in a mechanism involving translation initiation and elongation. Loss of IRE1α leads to ribosomal stalling, and loss of upper layer Satb2-expressing neurons at the expense of deeper layer, CTIP2-expressing ones. Moreover, IRE1α controls the proteostasis of eIF4A1 to drive translation of neuronal subtype determinants. [17]

Further reading

Notes and References

  1. Tirasophon W, Welihinda AA, Kaufman RJ . A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells . Genes & Development . 12 . 12 . 1812–1824 . June 1998 . 9637683 . 316900 . 10.1101/gad.12.12.1812 .
  2. Web site: Entrez Gene: ERN1 endoplasmic reticulum to nucleus signalling 1.
  3. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D . 6 . IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA . Nature . 415 . 6867 . 92–96 . January 2002 . 11780124 . 10.1038/415092a . 2002Natur.415...92C . 4319118 .
  4. Kurtishi A, Rosen B, Patil KS, Alves GW, Møller SG . Cellular Proteostasis in Neurodegeneration . Molecular Neurobiology . 56 . 5 . 3676–3689 . May 2019 . 30182337 . 10.1007/s12035-018-1334-z . 52158118 .
  5. Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles ÁO, Medinas DB, Salazar C, Foley A, Gajardo I, Thielen P, Iwawaki T, Scheper W, Soto C, Palacios AG, Hoozemans JJ, Hetz C . 6 . IRE1 signaling exacerbates Alzheimer's disease pathogenesis . Acta Neuropathologica . 134 . 3 . 489–506 . September 2017 . 28341998 . 10.1007/s00401-017-1694-x . 9380354 .
  6. Yan C, Liu J, Gao J, Sun Y, Zhang L, Song H, Xue L, Zhan L, Gao G, Ke Z, Liu Y, Liu J . 6 . IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson's disease . Cell Death & Disease . 10 . 11 . 800 . October 2019 . 31641108 . 6805898 . 10.1038/s41419-019-2039-6 .
  7. Montibeller L, de Belleroche J . Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR target genes . Cell Stress & Chaperones . 23 . 5 . 897–912 . September 2018 . 29725981 . 6111088 . 10.1007/s12192-018-0897-y .
  8. Chen D, Wang Y, Chin ER . Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice . Frontiers in Cellular Neuroscience . 9 . 170 . 2015-05-18 . 26041991 . 4435075 . 10.3389/fncel.2015.00170 . free .
  9. Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L . Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha . Molecular and Cellular Biology . 22 . 24 . 8506–8513 . December 2002 . 12446770 . 139892 . 10.1128/MCB.22.24.8506-8513.2002 .
  10. Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C, Kriebel D, Der-Sarkissian A, Krishnan K, Schweitzer C, Liu Z, Malyankar UM, Chiovitti D, Canny M, Durocher D, Sicheri F, Patterson JB . 6 . Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease . The Journal of Biological Chemistry . 286 . 14 . 12743–12755 . April 2011 . 21303903 . 3069474 . 10.1074/jbc.M110.199737 . free .
  11. Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, Silverman RH, Neubert TA, Baxendale IR, Ron D, Harding HP . 6 . The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule . Proceedings of the National Academy of Sciences of the United States of America . 109 . 15 . E869–E878 . April 2012 . 22315414 . 3326519 . 10.1073/pnas.1115623109 . free .
  12. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L, Hu Y, Fabre C, Minami J, Ohguchi H, Kiziltepe T, Ikeda H, Kawano Y, French M, Blumenthal M, Tam V, Kertesz NL, Malyankar UM, Hokenson M, Pham T, Zeng Q, Patterson JB, Richardson PG, Munshi NC, Anderson KC . 6 . Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma . Blood . 119 . 24 . 5772–5781 . June 2012 . 22538852 . 3382937 . 10.1182/blood-2011-07-366633 .
  13. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero DE, Bouley DM, Offner F, Niwa M, Koong AC . 6 . Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma . Blood . 117 . 4 . 1311–1314 . January 2011 . 21081713 . 3056474 . 10.1182/blood-2010-08-303099 .
  14. Ri M, Tashiro E, Oikawa D, Shinjo S, Tokuda M, Yokouchi Y, Narita T, Masaki A, Ito A, Ding J, Kusumoto S, Ishida T, Komatsu H, Shiotsu Y, Ueda R, Iwawaki T, Imoto M, Iida S . 6 . Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing . Blood Cancer Journal . 2 . 7 . e79 . July 2012 . 22852048 . 3408640 . 10.1038/bcj.2012.26 .
  15. Wang L, Perera BG, Hari SB, Bhhatarai B, Backes BJ, Seeliger MA, Schürer SC, Oakes SA, Papa FR, Maly DJ . 6 . Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors . Nature Chemical Biology . 8 . 12 . 982–989 . December 2012 . 23086298 . 3508346 . 10.1038/nchembio.1094 .
  16. Urra . Hery . Henriquez . Daniel R. . Cánovas . José . Villarroel-Campos . David . Carreras-Sureda . Amado . Pulgar . Eduardo . Molina . Emiliano . Hazari . Younis M. . Limia . Celia M. . Alvarez-Rojas . Sebastián . Figueroa . Ricardo . Vidal . Rene L. . Rodriguez . Diego A. . Rivera . Claudia A. . Court . Felipe A. . August 2018 . IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A . Nature Cell Biology . en . 20 . 8 . 942–953 . 10.1038/s41556-018-0141-0 . 30013108 . 1465-7392.
  17. Borisova . Ekaterina . Newman . Andrew G. . Couce Iglesias . Marta . Dannenberg . Rike . Schaub . Theres . Qin . Bo . Rusanova . Alexandra . Brockmann . Marisa . Koch . Janina . Daniels . Marieatou . Turko . Paul . Jahn . Olaf . Kaplan . David R. . Rosário . Marta . Iwawaki . Takao . 2024-06-07 . Protein translation rate determines neocortical neuron fate . Nature Communications . en . 15 . 1 . 4879 . 10.1038/s41467-024-49198-w . 2041-1723 . 11161512 . 38849354.