Hyperbolic law of cosines explained
In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry.[1] It can also be related to the relativistic velocity addition formula.[2] [3]
History
Describing relations of hyperbolic geometry, Franz Taurinus showed in 1826 that the spherical law of cosines can be related to spheres of imaginary radius, thus he arrived at the hyperbolic law of cosines in the form:[4]
which was also shown by Nikolai Lobachevsky (1830):[5]
Ferdinand Minding gave it in relation to surfaces of constant negative curvature:[6]
as did Delfino Codazzi in 1857:[7]
The relation to relativity using rapidity was shown by Arnold Sommerfeld in 1909[8] and Vladimir Varićak in 1910.
Hyperbolic laws of cosines
with angles
and side lengths
,
, and
, the following two rules hold. The first is an analogue of Euclidean law of cosines, expressing the length of one side in terms of the other two and the angle between the latter:
The second law has no Euclidean analogue, since it expresses the fact that lengths of sides of a hyperbolic triangle are determined by the interior angles:
Houzel indicates that the hyperbolic law of cosines implies the angle of parallelism in the case of an ideal hyperbolic triangle:[9]
Hyperbolic law of Haversines
In cases where
is small, and being solved for, the numerical precision of the standard form of the hyperbolic law of cosines will drop due to
rounding errors, for exactly the same reason it does in the
Spherical law of cosines. The hyperbolic version of the law of haversines can prove useful in this case:
Relativistic velocity addition via hyperbolic law of cosines
Setting
\left[\tfrac{a}{k}, \tfrac{b}{k}, \tfrac{c}{k}\right]=\left[\xi, η, \zeta\right]
in, and by using hyperbolic identities in terms of the
hyperbolic tangent, the hyperbolic law of cosines can be written:
In comparison, the velocity addition formulas of special relativity for the x and y-directions as well as under an arbitrary angle
, where is the relative
velocity between two
inertial frames, the velocity of another object or frame, and the
speed of light, is given by
It turns out that this result corresponds to the hyperbolic law of cosines - by identifying
\left[\xi, η, \zeta\right]
with relativistic
rapidities {\scriptstyle\left(\left[
\right]=\left[\tanh\xi, \tanhη, \tanh\zeta\right]\right)},
the equations in assume the form:
See also
References
Bibliography
- Book: Anderson, James W. . 2005 . Hyperbolic Geometry . 2nd . Springer . London . 1-85233-934-9 .
- Book: Barrett, J. F. . 2019 . 2006 . The Hyperbolic Theory of Relativity . 1102.0462 .
- Book: Bonola, R. . Non-Euclidean Geometry: A Critical and Historical Study of Its Development . 1912 . Chicago . Open Court .
- Codazzi . D. . 1857 . Intorno alle superficie le quali hanno costante il prodotto de due raggi di curvatura . it . About surfaces which have constant the product of two radii of curvature . Ann. Sci. Mat. Fis. . 8 . 351–354 .
- Gray . J. . Non-Euclidean Geometry: A Re-interpretation . 1979 . Historia Mathematica . 6 . 3 . 236–258 . 10.1016/0315-0860(79)90124-1 . free .
- Book: Houzel, Christian . 1992 . The Birth of Non-Euclidean Geometry . 3–21 . 1830–1930: A Century of Geometry: Epistemology, History and Mathematics . . 402 . . 3-540-55408-4 . Boi . L. . Flament . D. . Salanskis . J. M. .
- Book: Lobachevsky, N. . 1898 . 1830 . Über die Anfangsgründe der Geometrie . On the beginnings of geometry . Zwei geometrische Abhandlungen . Two Geometric Treatises . de . Engel . F. . Stäckel . P. . Leipzig . Teubner . 21–65 .
- Minding . F. . 1840 . Beiträge zur Theorie der kürzesten Linien auf krummen Flächen . Journal für die reine und angewandte Mathematik . 20 . 324 .
- Pauli . Wolfgang . 1921 . Encyclopädie der mathematischen Wissenschaften . Die Relativitätstheorie . de . The Theory of Relativity . Wolfgang Pauli . 539–776 . 5 . 2 .
- Pauli . Wolfgang . 1981 . 1921 . Theory of Relativity . Fundamental Theories of Physics . 165 . Dover Publications . 0-486-64152-X . none .
- Book: Reid . Miles . Szendröi . Balázs . 2005 . Geometry and Topology . §3.10 Hyperbolic triangles and trig . Miles Reid . . 0-521-61325-6 . 2194744 .
- Book: Reiman, István . 1999 . Geometria és határterületei . hu . Szalay Könyvkiadó és Kereskedőház Kft. . 978-963-237-012-5 .
- Sommerfeld . A. . 1909 . Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie . de . . Verh. Dtsch. Phys. Ges. . 21 . 577–582 . Arnold Sommerfeld .
- Book: Taurinus, Franz Adolph . Geometriae prima elementa. Recensuit et novas observationes adjecit . la . The first elements of geometry. Reviewed and new added observations . 1826 . Köln . Bachem . 66.
- Varičak . Vladimir . 1912 . . de . . Jahresbericht der Deutschen Mathematiker-Vereinigung . 21 . 103–127 . Vladimir Varićak .
External links
Notes and References
- ; .
- .
- .
- .
- ; .
- ; .
- .
- .
- .