Hyperaccumulators table – 3 explained

This list covers hyperaccumulators, plant species which accumulate, or are tolerant of radionuclides (Cd, Cs-137, Co, Pu-238, Ra, Sr, U-234, 235, 238), hydrocarbons and organic solvents (Benzene, BTEX, DDT, Dieldrin, Endosulfan, Fluoranthene, MTBE, PCB, PCNB, TCE and by-products), and inorganic compounds (Potassium ferrocyanide).

See also:

Accumulation rates (in mg/kg of dry weight) Latin name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Cd Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H), Zn(H) Origin Japan [1]
Cd >100 Avena strigosa Schreb. New-Oat
Lopsided Oat or Bristle Oat
[2]
Cd H- Bacopa monnieri Smooth Water Hyssop, Waterhyssop, Brahmi, Thyme-leafed gratiola, Water hyssop Cr(H), Cu(H), Hg(A), Pb(A) Origin India; aquatic emergent species [3]
Cd Brassicaceae Mustards, mustard flowers, crucifers or, cabbage family Cd(H), Cs(H), Ni(H), Sr(H), Zn(H) Phytoextraction [4]
Cd A- Brassica juncea L. Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [5]
Cd H- Vallisneria americana Tape Grass Cr(A), Cu(H), Pb(H) Origins Europe and N. Africa; extensively cultivated in the aquarium trade
Cd >100 Crotalaria juncea Sunn or sunn hemp High amounts of total soluble phenolics
Cd H- Eichhornia crassipes Cr(A), Cu(A), Hg(H), Pb(H), Zn(A). Also Cs, Sr, U[6] and pesticides[7] Pantropical/Subtropical, 'the troublesome weed'
Cd Helianthus annuus Phytoextraction & rhizofiltration [8]
Cd H- Hydrilla verticillata Cr(A), Hg(H), Pb(H)
Cd H- Lemna minor Pb(H), Cu(H), Zn(A) Native to North America and widespread
Cd T- Pistia stratiotes Cu(T), Hg(H), Cr(H) Pantropical, Origin South U.S.A.; aquatic herb
Cd Salix viminalis L. Common Osier, Basket Willow Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products; Pb, U, Zn (S. viminalix); Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes)
Cd Spirodela polyrhiza Giant Duckweed Cr(H), Pb(H), Ni(H), Zn(A) Native to North America [10] [11]
Cd >100 Tagetes erecta L. African-tall Tolerance only. Lipid peroxidation level increases; activities of antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase are depressed.
Cd Thlaspi caerulescens Alpine pennycress Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Its rhizosphere's bacterial population is less dense than with Trifolium pratense but richer in specific metal-resistant bacteria.[12] [13] [14] [15] [16]
Cd 1000 Vallisneria spiralis 37 records of plants; origin India [17]
Cs-137 Acer rubrum, Acer pseudoplatanusPu-238, Sr-90 Leaves: much less uptake in Larch and Sycamore maple than in Spruce.[18]
Cs-137 Agrostis spp. Agrostis spp. Grass or Forb species capable of accumulating radionuclides
Cs-137 up to 3000 Bq kg-1[19] Amaranthus retroflexus (cv. Belozernii, aureus, Pt-95) Redroot Amaranth Cd(H), Cs(H), Ni(H), Sr(H), Zn(H) Phytoextraction. Can accumulate radionuclides, ammonium nitrate and ammonium chloride as chelating agents. Maximum concentration is reached after 35 days of growth.
Cs-137 Brassicaceae Mustards, mustard flowers, crucifers or, cabbage family Cd(H), Cs(H), Ni(H), Sr(H), Zn(H) Phytoextraction. Ammonium nitrate and ammonium chloride as chelating agents.
Cs-137 Brassica juncea Contains 2 to 3 times more Cs-137 in his roots than in the biomass above ground Ammonium nitrate and ammonium chloride as chelating agents.
Cs-137 Cerastium fontanum Big Chickweed Grass or Forb species capable of accumulating radionuclides
Cs-137 Beta vulgaris, Chenopodiaceae, Kail? and/or Salsola? Sr-90, Cs-137 Grass or Forb species capable of accumulating radionuclides
Cs-137 Cocos nucifera Tree able to accumulate radionuclides
Cs-137 Eichhornia crassipes U, Sr (high % uptake within a few days). Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A) and pesticides.
Cs-137 Eragrostis bahiensis
(Eragrostis)
Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution.
Cs-137 Eucalyptus tereticornis Sr-90 Tree able to accumulate radionuclides
Cs-137 Festuca arundinacea Grass or Forb species capable of accumulating radionuclides
Cs-137 Festuca rubra Grass or Forb species capable of accumulating radionuclides
Cs-137 Glomus mosseae as chelating agent
(Glomus (fungus))
Mycorrhizal fungi Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution.
Cs-137 Glomus intradices
(Glomus (fungus))
Mycorrhizal fungi Glomus mosseae as chelating agent. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution.
Cs-137 4900-8600[20] Helianthus annuus U, Sr (high % uptake within a few days) Accumulates up to 8 times more Cs-137 than timothy or foxtail. Contains 2 to 3 times more Cs-137 in his roots than in the biomass above ground.
Cs-137 Larix Leaves: much less uptake in Larch and Sycamore maple than in Spruce. 20% of the translocated caesium into new leaves resulted from root-uptake 2.5 years after the Chernobyl accident.
Cs-137 Liquidambar styraciflua Pu-238, Sr-90 Tree able to accumulate radionuclides
Cs-137 Liriodendron tulipifera Pu-238, Sr-90 Tree able to accumulate radionuclides
Cs-137 Lolium multiflorum Sr Mycorrhizae: accumulates much more Cs-137 and Sr-90 when grown in Sphagnum peat than in any other medium incl. Clay, sand, silt and compost.[21]
Cs-137 Lolium perenne Can accumulate radionuclides
Cs-137 Panicum virgatum
Cs-137 Phaseolus acutifolius Tepary Beans Cd(H), Cs(H), Ni(H), Sr(H), Zn(H) Phytoextraction. Ammonium nitrate and ammonium chloride as chelating agents
Cs-137 Phalaris arundinacea L. Cd(H), Cs(H), Ni(H), Sr(H), Zn(H) Ammonium nitrate and ammonium chloride as chelating agents. Phytoextraction
Cs-137 Picea abies Conc. about 25-times higher in bark compared to wood, 1.5–4.7 times higher in directly contaminated twig-axes than in leaves.
Cs-137 Pinus radiata, Pinus ponderosa Sr-90. Also petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products (Pinus spp. Phytocontainment. Tree able to accumulate radionuclides.
Cs-137 Sorghum halepense
Cs-137 Trifolium repens Grass or Forb species capable of accumulating radionuclides
Cs-137 H Zea mays High absorption rate. Accumulates radionuclides. Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground.
Co 1000 to 4304[22] Haumaniastrum robertii
(Lamiaceae)
Copper flower 27 records of plants; origin Africa. Vernacular name: 'copper flower'. This species' phanerogamme has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.
Co H- Thlaspi caerulescens Alpine pennycress Cd(H), Cr(A), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction
Pu-238 Acer rubrum Cs-137, Sr-90 Tree able to accumulate radionuclides
Pu-238 Liquidambar styraciflua Cs-137, Sr-90 Tree able to accumulate radionuclides
Pu-238 Liriodendron tulipifera Cs-137, Sr-90 Tree able to accumulate radionuclides
Ra No reports found for accumulation
Sr Acer rubrum Cs-137, Pu-238 Tree able to accumulate radionuclides
Sr Brassicaceae Mustards, mustard flowers, crucifers or, cabbage family Cd(H), Cs(H), Ni(H), Zn(H) Phytoextraction
Sr Beta vulgaris, Chenopodiaceae, Kail? and/or Salsola? Sr-90, Cs-137 Can accumulate radionuclides
Sr Eichhornia crassipes Cs-137, U-234, 235, 238. Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A) and pesticides. In pH of 9, accumulates high concentrations of Sr-90 with approx. 80 to 90% of it in its roots
Sr Eucalyptus tereticornis Forest redgum Cs-137 Tree able to accumulate radionuclides
Sr H-? Helianthus annuus Accumulates radionuclides; high absorption rate. Phytoextraction & rhizofiltration
Sr Liquidambar styraciflua Cs-137, Pu-238 Tree able to accumulate radionuclides
Sr Liriodendron tulipifera Cs-137, Pu-238 Tree able to accumulate radionuclides
Sr Lolium multiflorum Italian Ryegrass Cs Mycorrhizae: accumulates much more Cs-137 and Sr-90 when grown in Sphagnum peat than in any other medium incl. clay, sand, silt and compost.
Sr 1.5-4.5 % in their shoots Pinus radiata, Pinus ponderosa Petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products; Cs-137 Phytocontainment. Accumulate 1.5-4.5 % of Sr-90 in their shoots.
Sr Apiaceae (a.k.a. Umbelliferae) Carrot or parsley family Species most capable of accumulating radionuclides
Sr Fabaceae (a.k.a. Leguminosae) Legume, pea, or bean family Species most capable of accumulating radionuclides
U Amaranthus Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Zn(H) Citric acid chelating agent and see note. Cs: maximum concentration is reached after 35 days of growth.
U Brassica juncea, Brassica chinensis, Brassica narinosa Cabbage family Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Zn(H) Citric acid chelating agent increases uptake 1000 times,[23] and see note
U-234, 235, 238 Eichhornia crassipes Cs-137, Sr-90. Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A), and pesticides.
U-234, 235, 238 95% of U in 24 hours. Helianthus annuus Accumulates radionuclides; At a contaminated wastewater site in Ashtabula, Ohio, 4 wk-old splants can remove more than 95% of uranium in 24 hours. Phytoextraction & rhizofiltration. URL
U Juniperus Accumulates (radionuclides) U in his roots
U Picea mariana Accumulates (radionuclides) U in his twigs
U Quercus Accumulates (radionuclides) U in his roots
U Kail? and/or Salsola?Russian thistle (tumble weed)
U Salix viminalis Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products; Cd, Pb, Zn (S. viminalis); potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes)
U Silene vulgaris (a.k.a. "Silene cucubalus)
U Zea mays
U A-?
Radionuclides Tradescantia bracteata Indicator for radionuclides: the stamens (normally blue or blue-purple) become pink when exposed to radionuclides
Benzene Chlorophytum comosum spider plant [24]
Benzene Ficus elastica rubber fig, rubber bush, rubber tree, rubber plant, or Indian rubber bush
Benzene Kalanchoe blossfeldiana Kalanchoe seems to take benzene selectively over toluene.
Benzene Pelargonium x domesticum Germanium
Phanerochaete chrysosporium White rot fungus DDT, Dieldrin, Endodulfan, Pentachloronitro-benzene, PCP Phytostimulation
Phanerochaete chrysosporium White rot fungus BTEX, Dieldrin, Endodulfan, Pentachloronitro-benzene, PCP Phytostimulation
Phanerochaete chrysosporium White rot fungus DDT, BTEX, Endodulfan, Pentachloronitro-benzene, PCP Phytostimulation
Phanerochaete chrysosporium White rot fungus DDT, BTEX, Dieldrin, PCP, Pentachloronitro-benzène Phytostimulation
Cyclotella caspia Cyclotella caspia Approximate rate of biodegradation on 1st day: 35%; on 6th day: 85% (rate of physical degradation 5.86% only). [25]
Hydrocarbons Cynodon dactylon (L.) Pers. Mean petroleum hydrocarbons reduction of 68% after 1 year [26]
Hydrocarbons Festuca arundinacea Mean petroleum hydrocarbons reduction of 62% after 1 year [27]
Hydrocarbons Pinus spp. Pine spp. Organic solvents, MTBE, TCE and by-products. Also Cs-137, Sr-90 Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)
Hydrocarbons Salix spp. Osier spp. Ag, Cr, Hg, Se, organic solvents, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes)
Pinus spp. Pine spp. Petroleum hydrocarbons, Organic solvents, TCE and by-products. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa) Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)
MTBE Salix spp. Osier spp. Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, TCE and by-products; Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction, phytocontainment. Perchlorate (wetland halophytes)
Organic solvents Pinus spp. Pine spp. Petroleum hydrocarbons, MTBE, TCE and by-products. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa) Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)
Organic solvents Salix spp. Osier spp. Ag, Cr, Hg, Se, petroleum hydrocarbons, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. phytocontainment . Perchlorate (wetland halophytes)
Organic solvents Pinus spp. Pine spp. Petroleum hydrocarbons, MTBE, TCE and by-products. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa) Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)
Organic solvents Salix spp. Osier spp. Ag, Cr, Hg, Se, petroleum hydrocarbons, MTBE, TCE and by-products; Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. phytocontainment . Perchlorate (wetland halophytes)
Phanerochaete chrysosporium White rot fungus DDT, BTEX, Dieldrin, Endodulfan, PCP Phytostimulation
8.64% to 15.67% of initial mass Salix babylonica L. Weeping Willow Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products (Salix spp.); Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction. Perchlorate (wetland halophytes). No ferrocyanide in air from plant transpiration. A large fraction of initial mass was metabolized during transport within the plant.
Potassium ferrocyanide 8.64% to 15.67% of initial mass Hankow Willow, Hybrid Willow Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products (Salix spp.); Cd, Pb, U, Zn (S. viminalis). No ferrocyanide in air from plant transpiration.
PCB Rosa spp. Paul’s Scarlet Rose Phytodegradation
PCP Phanerochaete chrysosporium White rot fungus DDT, BTEX, Dieldrin, Endodulfan, Pentachloronitro-benzène Phytostimulation
Chlorophytum comosum spider plant Seems to lower the removal rates of benzene and methane.
TCE and by-products Pinus spp. Pine spp. Petroleum hydrocarbons, organic solvents, MTBE. Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa) Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)
TCE and by-products Salix spp. Osier spp. Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE; Cd, Pb, U, Zn (S. viminalis); Potassium ferrocyanide (S. babylonica L.) Phytoextraction, phytocontainment. Perchlorate (wetland halophytes)
Musa (genus) Banana tree Extra-dense root system, good for rhizofiltration.[28]
Cyperus papyrus Extra-dense root system, good for rhizofiltration
Taros Extra-dense root system, good for rhizofiltration
Brugmansia spp. Angel's trumpet Semi-anaerobic, good for rhizofiltration [29]
Caladium Caladium Semi-anaerobic and resistant, good for rhizofiltration
Caltha palustris Marsh marigold Semi-anaerobic and resistant, good for rhizofiltration
Iris pseudacorus Yellow Flag, paleyellow iris Semi-anaerobic and resistant, good for rhizofiltration
Mentha aquatica Water Mint Semi-anaerobic and resistant, good for rhizofiltration
Scirpus lacustris Bulrush Semi-anaerobic and resistant, good for rhizofiltration
Typha latifolia Broadleaf cattail Semi-anaerobic and resistant, good for rhizofiltration

Notes

Links to the other sections

Notes and References

  1. McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
  2. https://archive.today/20130415165613/http://jxb.oxfordjournals.org/cgi/content/abstract/57/12/2955?maxtoshow=&HITS=&hits=&RESULTFORMAT=1&andorexacttitle=and&fulltext=seed,+hyperaccumulator&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=date&resourcetype=HWCIT
  3. Gurta et al. 1994
  4. McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19
  5. Web site: Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings -- Bennett et al. 32 (2): 432 -- Journal of Environmental Quality . 2006-10-16 . dead . https://web.archive.org/web/20070310042519/http://jeq.scijournals.org/cgi/content/abstract/32/2/432 . 2007-03-10 . Lindsay E. Bennetta, Jason L. Burkheada, Kerry L. Halea, Norman Terryb, Marinus Pilona and Elizabeth A. H. Pilon-Smits, Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings. Journal of Environmental Quality 32:432-440 (2003)
  6. https://web.archive.org/web/20120111174116/http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm
  7. Web site: CSA . 2006-10-16 . dead . https://web.archive.org/web/20110520035859/http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=6028544&q=&uid=788532439&setcookie=yes . 2011-05-20 . J.K. Lan. Recent developments of phytoremediation.
  8. Web site: Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals -- Schmidt 32 (6): 1939 -- Journal of Environmental Quality . 2006-10-16 . dead . https://web.archive.org/web/20070225035837/http://jeq.scijournals.org/cgi/content/abstract/32/6/1939 . 2007-02-25 ., Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals, by Ulrich Schmidt.
  9. https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16703454&dopt=Citation
  10. McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891
  11. Srivastav 1994
  12. Web site: NRC Research Press . 2006-10-28 . dead . https://web.archive.org/web/20070311064304/http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_abst_e?cjm_w01-067_47_ns_nf_cjm47-01 . 2007-03-11 . T.A. Delorme, J.V. Gagliardi, J.S. Angle, and R.L. Chaney. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Conseil National de Recherches du Canada
  13. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202005000100010
  14. Baker & Brooks, 1989
  15. Web site: Phytoremediation of Heavy Metal-Contaminated Soils: Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction -- Lombi et al. 30 (6): 1919 -- Journal of Environmental Quality . 2006-10-16 . dead . https://web.archive.org/web/20070311051135/http://jeq.scijournals.org/cgi/content/abstract/30/6/1919?maxtoshow=&HITS=&hits=&RESULTFORMAT=1&fulltext=phytoremediation+permaculture&andorexactfulltext=or&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT . 2007-03-11 . E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction.
  16. Phytoremediation Decision Tree, ITRC
  17. Brown et al. 1995
  18. https://doi.org/10.1007%2FBF01219349
  19. Dushenkov, S., A. Mikheev, A. Prokhnevsky, M. Ruchko, and B. Sorochinsky, Phytoremediation of Radiocesium-Contaminated Soil in the Vicinity of Chernobyl, Ukraine. Environmental Science and Technology 1999. 33, no. 3 : 469-475. Cited in Phytoremediation of radionuclides.
  20. Negri, C. M., and R. R. Hinchman, 2000. The use of plants for the treatment of radionuclides. Chapter 8 of Phytoremediation of toxic metals: Using plants to clean up the environment, ed. I. Raskin and B. D. Ensley. New York: Wiley-Interscience Publication. Cited in Phytoremediation of Radionuclides.
  21. A. Paasikallio, The effect of time on the availability of strontium-90 and cesium-137 to plants from Finnish soils. Annales Agriculturae Fenniae, 1984. 23: 109-120. Cited in Westhoff99.
  22. https://doi.org/10.1007%2FBF02187261
  23. Huang, J. W., M. J. Blaylock, Y. Kapulnik, and B. D. Ensley, 1998. Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants. Environmental Science and Technology. 32, no. 13 : 2004-2008. Cited in Phytoremediation of radionuclides.
  24. https://doi.org/10.1023%2FA%3A1008937417598
  25. Web site: Toxicity of Fluoranthene and Its Biodegradation by Cyclotella caspia Alga -作者:Yu Liu,Tian-Gang Luan,Ning-Ning Lu,Chong-Yu Lan . 2006-10-19 . dead . https://web.archive.org/web/20070927212832/http://scholar.ilib.cn/Abstract.aspx?A=zwxb200602007 . 2007-09-27 . . Yu Liu, Tian-Gang Luan, Ning-Ning Lu, Chong-Yu Lan, Toxicity of Fluoranthene and Its Biodegradation by Cyclotella caspia Alga. Journal of Integrative Plant Biology, Fev. 2006
  26. Web site: Phytoremediation of Aged Petroleum Sludge: Effect of Inorganic Fertilizer -- Hutchinson et al. 30 (2): 395 -- Journal of Environmental Quality . 2006-10-16 . dead . https://web.archive.org/web/20070929102639/http://intl-jeq.scijournals.org/cgi/content/abstract/30/2/395 . 2007-09-29 . S.L. Hutchinson, M.K. Banks and A.P. Schwab, Phytoremediation of Aged Petroleum Sludge, Effect of Inorganic Fertilizer
  27. http://aem.asm.org/cgi/content/abstract/69/1/483?maxtoshow=&HITS=&hits=&RESULTFORMAT=1&fulltext=phytoremediation+permaculture&andorexactfulltext=or&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
  28. http://www.livingmachines.com/
  29. http://www.livingmachines.com/
  30. https://doi.org/10.1007%2FBF00157420
  31. J.A. Entry, P. T. Rygiewicz, W.H. Emmingham. Strontium-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environmental Pollution 1994, 86: 201-206. Cited in Westhoff99.
  32. https://web.archive.org/web/20081006081028/http://jxb.oxfordjournals.org/cgi/content/abstract/51/351/1635
  33. https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15093373&dopt=Citation