Induced hydraulic fracturing | |
Type: | Mechanical |
Sector: | Mining |
Technologies: | Fluid pressure |
Product: | Natural gas, petroleum |
Inventor: | Floyd Farris; J.B. Clark (Stanolind Oil and Gas Corporation) |
Year: | 1947 |
Fracking in Canada was first used in Alberta in 1953 to extract hydrocarbons from the giant Pembina oil field, the biggest conventional oil field in Alberta, which would have produced very little oil without fracturing. Since then, over 170,000 oil and gas wells have been fractured in Western Canada.[1] Fracking is a process that stimulates natural gas or oil in wellbores to flow more easily by subjecting hydrocarbon reservoirs to pressure through the injection of fluids or gas at depth causing the rock to fracture or to widen existing cracks.
New hydrocarbon production areas have been opened as fracking stimulating techniques are coupled with more recent advances in horizontal drilling. Complex wells that are many hundreds or thousands of metres below ground are extended even further through drilling of horizontal or directional sections. Massive fracturing has been widely used in Alberta since the late 1970s to recover gas from low-permeability sandstones such as the Spirit River Formation. The productivity of wells in the Cardium, Duvernay, and Viking formations in Alberta, Bakken formation in Saskatchewan, Montney and Horn River formations in British Columbia would not be possible without fracking technology. Fracking has revitalized legacy oilfields. "Hydraulic fracturing of horizontal wells in unconventional shale, silt and tight sand reservoirs unlocks gas, oil and liquids production that until recently was not considered possible." Conventional oil production in Canada was on a decrease since about 2004 but this changed with the increased production from these formations using fracking. Fracking is one of the primary technologies employed to extract shale gas or tight gas from unconventional reservoirs.
In 2012 Canada averaged 356 active drilling rigs, coming in second to the United States with 1,919 active drilling rigs. The United States represents just below 60 percent of worldwide activity. New Brunswick, Newfoundland, Nova Scotia and Quebec have banned fracking.[2]The Spirit River, Cardium, Duvernay, Viking, Montney (AB and BC), and Horn River formations are stratigraphical units of the Western Canadian Sedimentary Basin (WCSB) which underlies 1400000km2 of Western Canada and which contains one of the world's largest reserves of petroleum and natural gas. The Montney Formation, located in Northeast British Columbia and West-Central Alberta, and the Duvernay Formation located in central Alberta, are currently the most prospective formations in the WCSB for development of unconventional oil and gas reservoirs that require hydraulic fracturing stimulations. The Bakken formation is a rock unit of the Williston Basin that extends into southern Saskatchewan. In the early 2000s significant increase in production the Williston Basin began because of application of horizontal drilling techniques, especially in the Bakken Formation.
The first commercial application of hydraulic fracturing was by Halliburton Oil Well Cementing Company (Howco) in 1949 in Stephens County, Oklahoma and in ArcherCounty, Texas, using a blend of crude oil and a proppant of screened river sand into existing wells with no horizontal drilling. In the 1950s about 750gal of fluid and 400lbs were used. By 2010 treatments averaged "approximately 60000gal of fluid and 100000lbs of propping agent, with the largest treatments exceeding 1000000gal of fluid and 5000000lbs of proppant."
In 2011 the Wall Street Journal summarized the history of hydraulic fracturing,
Horizontal oil or gas wells were unusual until the 1980s. Then in the late 1980s, operators along the Texas Gulf Coast began completing thousands of oil wells by drilling horizontally in the Austin Chalk, and giving 'massive' hydraulic fracturing treatments to the wellbores. Horizontal wells proved much more effective than vertical wells in producing oil from the tight chalk.[3] In the late 1990s in Texas, combining horizontal drilling and multi-stage hydraulic fracturing techniques made large-scale commercial shale gas production possible. Since then, shale gas wells have become longer and the number of stages per well has increased.[4] As shale gas companies target deeper, hotter, more unstable reservoirs, drilling technologies have been developed to tackle challenges in various environments.
Drilling Technology | Description | Environment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Underbalanced drilling[5] [6] [7] | - Drilling fluid operated at pressure less than pore pressure - Using compressed gas or foam - Speeds up penetration rate, reduces drilling costs and formation damage | Depleted zones, highly fractured and porous formation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Percussion/hammer drilling[8] | - Repeated impact to break rock at drill bit; - Drill bit contact with formation is 2% of operational time - Less tool wear - Impact and rebound can be self-sufficient and self-sustained|Hard rock formations|-|Radial drilling[9] [10] [11] | - 50 to 100 meters long laterals from mother well; - Controlled direction - Increase drainage radius and flow profile near wellbores - Rotary, jet-impact, plasma drilling methods|Near cap rock, water table, faults, and depleted zones|-|Drilling with liner/casing[12] [13] | - Installing liner without extracting drilling assembly - Prevents fracturing, closure and collapse of wellbore|Swelling shales, creeping formations, high pressure zones, and depleted zones|-|Monodiameter drilling liner[14] | - Creates continuous diameter of casing using expandable tubular technology - Decreases amount of drilling fluid and cement volumes, casing weight, and cutting disposal|Same environment as conventional telescoping casing installation|-|Non-invasive drilling fluids[15] | - Polymer, water, and oil mixture - Polymer seal pore throats and fractures - Prevents infiltration of fluid into formation|Depleted zones, highly fractures and porous formations|-|Reversible invert emulsion fluid[16] | - Can switch between water-in-oil and oil-in-water emulsion - Water-in-oil fluid prevent fluid loss, washout, and swelling - Oil-in-water offer better cleanup for better cementing|Swelling shales, salt zones, highly fractured and porous formations|} In parallel with the advancement in drilling technologies, injection technologies have also seen changes.
Cost and lifespan of hydraulic fracturingOil producers spend US$12 million upfront to drill a well but it is so efficient and produces so well during its short, 18-month lifespan, that oil producers using this technology can still make a profit even with oil at $50 a barrel. Lifespan of hydraulic fracturing: The lifecycle of shale gas development can vary from a few years to decades and occurs in six major stages, as described by Natural Resources Canada (NRC), assuming all approvals from the various regulatory authorities have been obtained:
AlbertaBecause of its vast oil and gas resources, Alberta is the busiest province in terms of hydraulic fracturing. The first well to be fractured in Canada was the discovery well of the giant Pembina oil field in 1953 and since then over 170,000 wells have been fractured. The Pembina field is a "sweet spot" in the much larger Cardium Formation, and the formation is still growing in importance as multistage horizontal fracturing is increasingly used. The Alberta Geological Survey evaluated the potential of new fracturing techniques to produce oil and gas from shale formations in the province, and found at least five prospects which show immediate promise: the Duvernay Formation, the Muskwa Formation, the Montney Formation, the Nordegg Member, and the basal Banff and Exshaw Formations.[27] These formations may contain up to 1.3Pcuft of gas-in-place. Between 2012 and 2015, 243 horizontal multistage fractured wells were drilled in the Duvernay Formation producing 36.9abbr=offNaNabbr=off of oil equivalent, distributed in 1.6e6oilbbl of oil, 11.7e6oilbbl of natural-gas condensate, and 23.6e6oilbbl of natural gas.[28] 201 of these wells were drilled in the Kaybob assessment area, whereas 36 wells, were drilled in the Edson-Willesden Green area and 6 wells in the Innisfail area, with horizontal lengths between 1000 and 2800 meters and well spacings between 150 and 450 meters. The development of condensate-rich areas in the Duvernay formation remain steady as the natural-gas condensate is a key product to dilute the bitumen produced from the closely located oil sands deposits in Athabasca, Peace River, and Cold Lake, and is traded with the same reference price as WTI oil. Even as the price of oil declined dramatically in 2014, hydraulic fracturing in so-called "sweet spots" such as the Cardium and Duvernay in Alberta, remained financially viable. British ColumbiaThe most shale gas activity in Canada has taken place in the province of British Columbia. In 2015, 80% of the natural gas production in the province was produced from unconventional sources, where the portion of the Montney Formation located in British Columbia (BC) contributed 3.4e9ft3 per day, corresponding to 64.4% of the province's total gas production. This formation contains 56% of the province's recoverable raw gas that corresponds to an estimate of 29.8abbr=offNaNabbr=off, and the remaining recoverable gas is distributed in other unconventional gas plays as the Liard Basin, Horn River Basin, and Cordova Basin, all of them located in the northeast portion of the province.[29] Talisman Energy, which was acquired by the Spanish company Repsol in 2015, is one operator company that "has extensive operations in the Montney shale gas area." In late July 2011 the Government of British Columbia gave Talisman Energy, whose head office is in Calgary, a twenty-year long-term water licence to draw water from the BC Hydro-owned Williston Lake reservoir. In 2013, the Fort Nelson First Nation, a remote community in northeastern B.C. with 800 community members, expressed frustration with royalties associated with gas produced through hydraulic fracturing in their territory. Three of British Columbia's four shale-gas reserves – the Horn River, Liard and Cordova Basins are on their lands. "Those basins hold the key to BC's LNG ambitions."[30] SaskatchewanThe Bakken shale oil and gas boom underway since 2009, driven by hydraulic fracturing technologies, has contributed to record growth, high employment rates and increase in population, in the province of Saskatchewan. Hydraulic fracturing has benefited small towns like Kindersley which saw its population increase to over 5,000 with the boom. Kindersley sells its treated municipal wastewater to oilfield service companies to use in hydraulic fracturing.[31] As the price of oil dropped dramatically in late 2014 partially in response to the shale oil boom, towns like Kindersley became vulnerable. QuebecThe Utica Shale, a stratigraphical unit of Middle Ordovician age underlies much of the northeastern United States and in the subsurface in the provinces of Quebec and Ontario.[32] Drilling and producing from the Utica Shale began in 2006 in Quebec, focusing on an area south of the St. Lawrence River between Montreal and Quebec City. Interest has grown in the region since Denver-based Forest Oil Corp. announced a significant discovery there after testing two vertical wells. Forest Oil said its Quebec assets has similar rock properties to the Barnett shale in Texas. Forest Oil, which has several junior partners in the region, has drilled both vertical and horizontal wells. Calgary-based Talisman Energy has drilled five vertical Utica wells, and began drilling two horizontal Utica wells in late 2009 with its partner Questerre Energy, which holds under lease more than 1 million gross acres of land in the region. Other companies in the play are Quebec-based Gastem and Calgary-based Canbriam Energy. The Utica Shale in Quebec potentially holds 4Tcuft at production rates of 1e6cuft per day. From 2006 through 2009 24 wells, both vertical and horizontal, were drilled to test the Utica. Positive gas flow test results were reported, although none of the wells were producing at the end of 2009. Gastem, one of the Utica shale producers, took its Utica Shale expertise to drill across the border in New York state.[33] In June 2011, the Quebec firm Pétrolia claimed to have discovered about 30e9oilbbl of oil on Anticosti Island, which is the first time that significant reserves were found in the province.[34] Debates on the merits of hydraulic fracturing have been on-going in Quebec since at least 2008. In 2012 the Parti Québécois government imposed a five-year moratorium on hydraulic fracturing in the region between Montreal and Quebec City, called the St. Lawrence Lowlands, with a population of about 2 million people. In February 2014, prior to announcing her provincial election campaign, former Premier of Quebec and former leader of the Parti Québécois (PQ), Pauline Marois, announced that the provincial government would help finance two exploratory shale gas operations as a prelude to hydraulic fracturing on the island, with the province pledging $115-million to finance drilling for two separate joint ventures in exchange for rights to 50% of the licences and 60% of any commercial profit. It was the first oil and gas deal of any size for the province. With the change in government that occurred in April 2014, the Liberals of Philippe Couillard could change that decision. Petrolia Inc., Corridor Resources and Maurel & Prom formed one joint-venture, while Junex Inc. was still seeking a private partner. In November 2014 a report published by Quebec's advisory office of environmental hearings, the Bureau d’audiences publiques sur l’environnement (BAPE), found "shale gas development in the Montreal-to-Quebec City region wouldn’t be worthwhile." BAPE warned of a "magnitude of potential impacts associated with shale gas industry in an area as populous and sensitive as the St. Lawrence Lowlands." The Quebec Oil and Gas Association challenged the accuracy of BAPE's report. On 16 December 2014 Quebec's Premier Philippe Couillard responded to the BAPE report stating there will be no hydraulic fracturing due to a lack of economic or financial interest and a lack of social acceptability. New BrunswickNew Brunswick's increased use of natural gas was facilitated by a single event: the arrival of natural gas from Nova Scotia's Sable Offshore Energy Project via the Maritimes and Northeast Pipeline (MNP) in January 2000.[35] Exploration and Production The following timeline illustrates the development of New Brunswick's natural gas production industry, post-1999. 2003: Natural gas is discovered and begins at McCully. Producing reservoir is Hiram Brook formation sandstone.[36] 2007: A 45-kilometre pipeline is constructed to connect the McCully gas field with the Maritimes and Northeast mainline and a gas processing plant is constructed in McCully area. 2007: Two natural gas gathering pipelines are constructed (450 metres and 2,000 metres in length) to tie in two existing well pads (F-28 and L-38) to the existing gathering system. 2007: Expansion of the McCully natural gas production including the construction of six new well pads and gathering pipelines. 2008: Further expansion of the McCully natural gas system including construction of a 3.4 kilometre pipeline to tie in well pad I-39. 2009: First hydraulic fracturing of a horizontally drilled well in New Brunswick in the McCully area. 2009: Start of exploratory drilling and hydraulic fracturing in the Elgin area, south of Petitcodiac. 2009–2010: The first shale-targeted wells are drilled in New Brunswick – four wells in the Elgin area, south of Petitcodiac. None are producing. 2014: The last hydraulic fracturing carried out in New Brunswick to date. Corridor Resources conducted hydraulic fracturing using liquid propane at five wells in the McCully and Elgin areas. Hydraulic fracturing fluidUnder the Canada Oil and Gas Operations Act, the National Energy Board (NEB) requests operators to submit the composition of the hydraulic fracturing fluids used in their operation that will be published online for public disclosure on the FracFocus.ca website. Most of hydraulic fracturing operations in Canada are done using water. Canada is also one of the most successful countries in the world to use carbon dioxide as fracturing fluid, with 1,200 successful operations by the end of 1990[37] Liquefied petroleum gas is also used as a fracturing fluid in provinces where usage of water is prohibited such as New Brunswick.[38] Possible related earthquakesSee also: List of earthquakes in Canada. The sharp seismicity increase observed in recent years in the Western Canada Sedimentary Basin is inferred to be triggered by hydraulic fracturing operations. Most of the seismic events reported in this period are closely located to hydraulic fracturing wells completed in western Alberta and northeast British Columbia. In response to this increased seismicity, in 2015 the Alberta Energy Regulator released the Subsurface Order No. 2 that requires mandatory implementation of a Traffic-Light Protocol (TLP) based on the local magnitude (ML) of seismic events detected during the monitored operations. According to this TLP, the hydraulic fracturing operations can continue as planned when the MLof the detected seismic events are below 2.0 (green light), must be modified and reported to the regulator when a seismic event of ML between 2.0 and 4.0 is detected (amber light), and must be immediately ceased when a seismic event of ML > 4.0 is detected within 5 km of a hydraulic fracturing well (red light). The BC Oil and Gas Commission
Provincial regulations associated with hydraulic fracturingSee also: Regulation of hydraulic fracturing. In Canada, hydraulic fracturing operations are governed by a number of provincial acts, regulations, guidelines, and directives. In this section, existing regulatory instruments are listed by province. Note: lists of provincial governing regulations are not exhaustive and new directives are drafted and implemented by the provincial government as necessary.
See also
External links |