Howson property explained
In the mathematical subject of group theory, the Howson property, also known as the finitely generated intersection property (FGIP), is the property of a group saying that the intersection of any two finitely generated subgroups of this group is again finitely generated. The property is named after Albert G. Howson who in a 1954 paper established that free groups have this property.[1]
Formal definition
is said to have the
Howson property if for every
finitely generated subgroups
of
their intersection
is again a finitely generated subgroup of
.
[2] Examples and non-examples
- Every finite group has the Howson property.
- The group
does not have the Howson property. Specifically, if
is the generator of the
factor of
, then for
and
, one has
H\capK=\operatorname{ncl}F(a,b)(a)
. Therefore,
is not finitely generated.
[3]
is a compact surface then the
fundamental group
of
has the Howson property.
[4]
, where
, never has the Howson property.
[5]
does not have the Howson property.
[6] - Among 3-manifold groups, there are many examples that do and do not have the Howson property. 3-manifold groups with the Howson property include fundamental groups of hyperbolic 3-manifolds of infinite volume, 3-manifold groups based on Sol and Nil geometries, as well as 3-manifold groups obtained by some connected sum and JSJ decomposition constructions.[6]
- For every
the
Baumslag–Solitar group BS(1,n)=\langlea,t\midt-1at=an\rangle
has the Howson property.
[3] - If G is group where every finitely generated subgroup is Noetherian then G has the Howson property. In particular, all abelian groups and all nilpotent groups have the Howson property.
- Every polycyclic-by-finite group has the Howson property.[7]
- If
are groups with the Howson property then their free product
also has the Howson property.
[8] More generally, the Howson property is preserved under taking amalgamated free products and
HNN-extension of groups with the Howson property over finite subgroups.
[9] - In general, the Howson property is rather sensitive to amalgamated products and HNN extensions over infinite subgroups. In particular, for free groups
and an infinite cyclic group
, the amalgamated free product
has the Howson property if and only if
is a maximal cyclic subgroup in both
and
.
[10]
has the Howson property if and only if every connected component of
is a complete graph.
[11] - Limit groups have the Howson property.[12]
- It is not known whether
has the Howson property.
[13]
the group
contains a subgroup isomorphic to
and does not have the Howson property.
[13]
G=\langlex1,...,xk\midrn=1\rangle
, where
are also locally quasiconvex
word-hyperbolic groups and therefore have the Howson property.
[16] - The Grigorchuk group G of intermediate growth does not have the Howson property.[17]
- The Howson property is not a first-order property, that is the Howson property cannot be characterized by a collection of first order group language formulas.[18]
satisfies a topological version of the Howson property: If
are topologically finitely generated closed subgroups of
then their intersection
is topologically finitely generated.
[19]
a ``generic"
-generator
-relator group
G=\langlex1,...xm|r1,...,rn\rangle
has the property that for any
-generated subgroups
their intersection
is again finitely generated.
[20]
does not have the Howson property.
[21]
does not have the Howson property, since it contains
.
[22] See also
Notes and References
- A. G. Howson, On the intersection of finitely generated free groups. Journal of the London Mathematical Society 29 (1954), 428–434
- O. Bogopolski, Introduction to group theory. Translated, revised and expanded from the 2002 Russian original. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. ; p. 102
- D. I. Moldavanskii, The intersection of finitely generated subgroups Siberian Mathematical Journal 9 (1968), 1422–1426
- L. Greenberg, Discrete groups of motions. Canadian Journal of Mathematics 12 (1960), 415–426
- R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson, Algebra i Logika 18 (1979), 513–522
- T. Soma, 3-manifold groups with the finitely generated intersection property, Transactions of the American Mathematical Society, 331 (1992), no. 2, 761–769
- V. Araújo, P. Silva, M. Sykiotis, Finiteness results for subgroups of finite extensions. Journal of Algebra 423 (2015), 592–614
- B. Baumslag, Intersections of finitely generated subgroups in free products. Journal of the London Mathematical Society 41 (1966), 673–679
- D. E. Cohen,Finitely generated subgroups of amalgamated free products and HNN groups. J. Austral. Math. Soc. Ser. A 22 (1976), no. 3, 274–281
- R. G. Burns,On the finitely generated subgroups of an amalgamated product of two groups. Transactions of the American Mathematical Society 169 (1972), 293–306
- H. Servatius, C. Droms, B. Servatius, The finite basis extension property and graph groups. Topology and combinatorial group theory (Hanover, NH, 1986/1987; Enfield, NH, 1988), 52–58, Lecture Notes in Math., 1440, Springer, Berlin, 1990
- F. Dahmani, Combination of convergence groups. Geometry & Topology 7 (2003), 933–963
- D. D. Long and A. W. Reid, Small Subgroups of
, Experimental Mathematics, 20(4):412–425, 2011
- J. P. McCammond, D. T. Wise, Coherence, local quasiconvexity, and the perimeter of 2-complexes. Geometric and Functional Analysis 15 (2005), no. 4, 859–927
- P. Schupp, Coxeter groups, 2-completion, perimeter reduction and subgroup separability, Geometriae Dedicata 96 (2003) 179–198
- G. Ch. Hruska, D. T. Wise, Towers, ladders and the B. B. Newman spelling theorem.Journal of the Australian Mathematical Society 71 (2001), no. 1, 53–69
- A. V. Rozhkov,Centralizers of elements in a group of tree automorphisms. Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 6, 82–105; translation in: Russian Acad. Sci. Izv. Math. 43 (1993), no. 3, 471–492
- B. Fine, A. Gaglione, A. Myasnikov, G. Rosenberger, D. Spellman, The elementary theory of groups. A guide through the proofs of the Tarski conjectures. De Gruyter Expositions in Mathematics, 60. De Gruyter, Berlin, 2014. ; Theorem 10.4.13 on p. 236
- L. Ribes, and P. Zalesskii, Profinite groups. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 40. Springer-Verlag, Berlin, 2010. ; Theorem 9.1.20 on p. 366
- G. N. Arzhantseva, Generic properties of finitely presented groups and Howson's theorem. Communications in Algebra 26 (1998), no. 11, 3783–3792
- A. S. Kirkinski,Intersections of finitely generated subgroups in metabelian groups.Algebra i Logika 20 (1981), no. 1, 37–54; Lemma 3.
- V. Guba and M. Sapir,On subgroups of R. Thompson's group
and other diagram groups. 190.8 (1999): 1077-1130; Corollary 20.