Homotopy fiber explained

f:A\toB

. It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groups

\to\pin+1(B)\to\pin(Hofiber(f))\to\pin(A)\to\pin(B)\to

Moreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished triangle

C(f)\bullet[-1]\toA\bullet\toB\bullet\xrightarrow{[+1]}

gives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber.

Construction

The homotopy fiber has a simple description for a continuous map

f:A\toB

. If we replace

f

by a fibration, then the homotopy fiber is simply the fiber of the replacement fibration. We recall this construction of replacing a map by a fibration:

Ef

to be the set of pairs

(a,\gamma)

where

a\inA

and

\gamma:I\toB

(for

I=[0,1]

) a path such that

\gamma(0)=f(a)

. We give

Ef

a topology by giving it the subspace topology as a subset of

A x BI

(where

BI

is the space of paths in

B

which as a function space has the compact-open topology). Then the map

Ef\toB

given by

(a,\gamma)\mapsto\gamma(1)

is a fibration. Furthermore,

Ef

is homotopy equivalent to

A

as follows: Embed

A

as a subspace of

Ef

by

a\mapsto\gammaa

where

\gammaa

is the constant path at

f(a)

. Then

Ef

deformation retracts to this subspace by contracting the paths.

The fiber of this fibration (which is only well-defined up to homotopy equivalence) is the homotopy fiber

\begin{matrix} Hofiber(f)&\to&Ef\\ &&\downarrow\\ &&B \end{matrix}

which can be defined as the set of all

(a,\gamma)

with

a\inA

and

\gamma:I\toB

a path such that

\gamma(0)=f(a)

and

\gamma(1)=*

for some fixed basepoint

*\inB

. A consequence of this definition is that if two points of

B

are in the same path connected component, then their homotopy fibers are homotopy equivalent.

As a homotopy limit

Another way to construct the homotopy fiber of a map is to consider the homotopy limit[2] pg 21 of the diagram

\underset{\leftarrow}{holim

}\left(\begin& & * \\& & \downarrow \\A & \xrightarrow & B\end\right)\simeq F_f
this is because computing the homotopy limit amounts to finding the pullback of the diagram

\begin{matrix} &&BI\\ &&\downarrow\\ A x *&\xrightarrow{f}&B x B \end{matrix}

where the vertical map is the source and target map of a path

\gamma:I\toB

, so

\gamma\mapsto(\gamma(0),\gamma(1))

This means the homotopy limit is in the collection of maps

\left\{(a,\gamma)\inA x BI:f(a)=\gamma(0)and\gamma(1)=*\right\}

which is exactly the homotopy fiber as defined above.

If

x0

and

x1

can be connected by a path

\delta

in

B

, then the diagrams

\begin{matrix} &&x0\\ &&\downarrow\\ A&\xrightarrow{f}&B \end{matrix}

and

\begin{matrix} &&x1\\ &&\downarrow\\ A&\xrightarrow{f}&B \end{matrix}

are homotopy equivalent to the diagram

\begin{matrix} &&[0,1]\\ &&\downarrow{\delta}\\ A&\xrightarrow{f}&B \end{matrix}

and thus the homotopy fibers of

x0

and

x1

are isomorphic in

hoTop

. Therefore we often speak about the homotopy fiber of a map without specifying a base point.

Properties

Homotopy fiber of a fibration

In the special case that the original map

f

was a fibration with fiber

F

, then the homotopy equivalence

A\toEf

given above will be a map of fibrations over

B

. This will induce a morphism of their long exact sequences of homotopy groups, from which (by applying the Five Lemma, as is done in the Puppe sequence) one can see that the map is a weak equivalence. Thus the above given construction reproduces the same homotopy type if there already is one.

Duality with mapping cone

The homotopy fiber is dual to the mapping cone, much as the mapping path space is dual to the mapping cylinder.[3]

Examples

Loop space

Given a topological space

X

and the inclusion of a point

\iota:\{x0\}\hookrightarrowX

the homotopy fiber of this map is then

\left\{(x0,\gamma)\in\{x0\} x XI:x0=\gamma(0)and\gamma(1)=x0\right\}

which is the loop space

\OmegaX

.

See also: Path space fibration.

From a covering space

Given a universal covering

\pi:\tilde{X}\toX

the homotopy fiber

Hofiber(\pi)

has the property

\pik(Hofiber(\pi))=\begin{cases} \pi1(X)&k<1\\ 0&k\geq1 \end{cases}

which can be seen by looking at the long exact sequence of the homotopy groups for the fibration. This is analyzed further below by looking at the Whitehead tower.

Applications

Postnikov tower

One main application of the homotopy fiber is in the construction of the Postnikov tower. For a (nice enough) topological space

X

, we can construct a sequence of spaces

\left\{Xn\right\}n

and maps

fn:Xn\toXn-1

where

\pik\left(Xn\right)=\begin{cases} \pik(X)&k\leqn\\ 0&otherwise \end{cases}

and

X\simeq\underset{\leftarrow}{lim

}\left(X_k\right)
Now, these maps

fn

can be iteratively constructed using homotopy fibers. This is because we can take a map

Xn-1\toK\left(\pin(X),n-1\right)

representing a cohomology class in

Hn-1\left(Xn-1,\pin(X)\right)

and construct the homotopy fiber

\underset{\leftarrow}{holim

}\left(\begin && * \\ && \downarrow \\ X_ & \xrightarrow & K\left(\pi_n(X), n - 1\right)\end\right)\simeq X_n
In addition, notice the homotopy fiber of

fn:Xn\toXn-1

is

Hofiber\left(fn\right)\simeqK\left(\pin(X),n\right)

showing the homotopy fiber acts like a homotopy-theoretic kernel. Note this fact can be shown by looking at the long exact sequence for the fibration constructing the homotopy fiber.

Maps from the whitehead tower

The dual notion of the Postnikov tower is the Whitehead tower which gives a sequence of spaces

n\}
\{X
n\geq0
and maps

fn:Xn\toXn-1

where
n\right)
\pi
k\left(X

=\begin{cases} \pik(X)&k\geqn\\ 0&otherwise \end{cases}

hence

X0\simeqX

. If we take the induced map
n+1
f
0:

Xn+1\toX

the homotopy fiber of this map recovers the

n

-th postnikov approximation

Xn

since the long exact sequence of the fibration

\begin{matrix}

n+1
Hofiber\left(f
0\right)

&\to&Xn+1\\ &&\downarrow\\ &&X \end{matrix}

we get

\begin{matrix} \to&\pik+1

n+1
\left(Hofiber\left(f
0\right)\right)

&\to&\pik+1(Xn+1)&\to&\pik+1(X)&\to\\ &\pik

n+1
\left(Hofiber\left(f
0\right)\right)

&\to&\pik\left(Xn+1\right)&\to&\pik(X)&\to\\ &\pik-1

n+1
\left(Hofiber\left(f
0\right)\right)

&\to&\pik-1\left(Xn+1\right)&\to&\pik-1(X)&\to \end{matrix}

which gives isomorphisms

\pik-1

n+1
\left(Hofiber\left(f
0\right)\right)

\cong\pik(X)

for

k\leqn

.

See also

References

Notes and References

  1. Joseph J. Rotman, An Introduction to Algebraic Topology (1988) Springer-Verlag (See Chapter 11 for construction.)
  2. Web site: Dugger. Daniel. A Primer on Homotopy Colimits. live. https://web.archive.org/web/20201203225718/https://pages.uoregon.edu/ddugger/hocolim.pdf. 3 Dec 2020.
  3. J.P. May, A Concise Course in Algebraic Topology, (1999) Chicago Lectures in Mathematics (See chapters 6,7.)