f:A\toB
Moreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished triangle… \to\pin+1(B)\to\pin(Hofiber(f))\to\pin(A)\to\pin(B)\to …
gives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber.C(f)\bullet[-1]\toA\bullet\toB\bullet\xrightarrow{[+1]}
The homotopy fiber has a simple description for a continuous map
f:A\toB
f
Ef
(a,\gamma)
a\inA
\gamma:I\toB
I=[0,1]
\gamma(0)=f(a)
Ef
A x BI
BI
B
Ef\toB
(a,\gamma)\mapsto\gamma(1)
Ef
A
A
Ef
a\mapsto\gammaa
\gammaa
f(a)
Ef
The fiber of this fibration (which is only well-defined up to homotopy equivalence) is the homotopy fiber
which can be defined as the set of all\begin{matrix} Hofiber(f)&\to&Ef\\ &&\downarrow\\ &&B \end{matrix}
(a,\gamma)
a\inA
\gamma:I\toB
\gamma(0)=f(a)
\gamma(1)=*
*\inB
B
Another way to construct the homotopy fiber of a map is to consider the homotopy limit[2] pg 21 of the diagram
this is because computing the homotopy limit amounts to finding the pullback of the diagram}\left(\begin& & * \\& & \downarrow \\A & \xrightarrow & B\end\right)\simeq F_f\underset{\leftarrow}{holim
where the vertical map is the source and target map of a path\begin{matrix} &&BI\\ &&\downarrow\\ A x *&\xrightarrow{f}&B x B \end{matrix}
\gamma:I\toB
This means the homotopy limit is in the collection of maps\gamma\mapsto(\gamma(0),\gamma(1))
which is exactly the homotopy fiber as defined above.\left\{(a,\gamma)\inA x BI:f(a)=\gamma(0)and\gamma(1)=*\right\}
If
x0
x1
\delta
B
and\begin{matrix} &&x0\\ &&\downarrow\\ A&\xrightarrow{f}&B \end{matrix}
are homotopy equivalent to the diagram\begin{matrix} &&x1\\ &&\downarrow\\ A&\xrightarrow{f}&B \end{matrix}
and thus the homotopy fibers of\begin{matrix} &&[0,1]\\ &&\downarrow{\delta}\\ A&\xrightarrow{f}&B \end{matrix}
x0
x1
hoTop
In the special case that the original map
f
F
A\toEf
B
The homotopy fiber is dual to the mapping cone, much as the mapping path space is dual to the mapping cylinder.[3]
Given a topological space
X
the homotopy fiber of this map is then\iota:\{x0\}\hookrightarrowX
which is the loop space\left\{(x0,\gamma)\in\{x0\} x XI:x0=\gamma(0)and\gamma(1)=x0\right\}
\OmegaX
See also: Path space fibration.
Given a universal covering
the homotopy fiber\pi:\tilde{X}\toX
Hofiber(\pi)
which can be seen by looking at the long exact sequence of the homotopy groups for the fibration. This is analyzed further below by looking at the Whitehead tower.\pik(Hofiber(\pi))=\begin{cases} \pi1(X)&k<1\\ 0&k\geq1 \end{cases}
One main application of the homotopy fiber is in the construction of the Postnikov tower. For a (nice enough) topological space
X
\left\{Xn\right\}n
fn:Xn\toXn-1
and\pik\left(Xn\right)=\begin{cases} \pik(X)&k\leqn\\ 0&otherwise \end{cases}
Now, these maps}\left(X_k\right)X\simeq\underset{\leftarrow}{lim
fn
representing a cohomology class inXn-1\toK\left(\pin(X),n-1\right)
and construct the homotopy fiberHn-1\left(Xn-1,\pin(X)\right)
In addition, notice the homotopy fiber of}\left(\begin && * \\ && \downarrow \\ X_ & \xrightarrow & K\left(\pi_n(X), n - 1\right)\end\right)\simeq X_n\underset{\leftarrow}{holim
fn:Xn\toXn-1
showing the homotopy fiber acts like a homotopy-theoretic kernel. Note this fact can be shown by looking at the long exact sequence for the fibration constructing the homotopy fiber.Hofiber\left(fn\right)\simeqK\left(\pin(X),n\right)
The dual notion of the Postnikov tower is the Whitehead tower which gives a sequence of spaces
n\} | |
\{X | |
n\geq0 |
fn:Xn\toXn-1
hence
n\right) \pi k\left(X =\begin{cases} \pik(X)&k\geqn\\ 0&otherwise \end{cases}
X0\simeqX
the homotopy fiber of this map recovers the
n+1 f 0: Xn+1\toX
n
Xn
we get\begin{matrix}
n+1 Hofiber\left(f 0\right) &\to&Xn+1\\ &&\downarrow\\ &&X \end{matrix}
which gives isomorphisms\begin{matrix} \to&\pik+1
n+1 \left(Hofiber\left(f 0\right)\right) &\to&\pik+1(Xn+1)&\to&\pik+1(X)&\to\\ &\pik
n+1 \left(Hofiber\left(f 0\right)\right) &\to&\pik\left(Xn+1\right)&\to&\pik(X)&\to\\ &\pik-1
n+1 \left(Hofiber\left(f 0\right)\right) &\to&\pik-1\left(Xn+1\right)&\to&\pik-1(X)&\to \end{matrix}
for\pik-1
n+1 \left(Hofiber\left(f 0\right)\right) \cong\pik(X)
k\leqn