Holevo's theorem is an important limitative theorem in quantum computing, an interdisciplinary field of physics and computer science. It is sometimes called Holevo's bound, since it establishes an upper bound to the amount of information that can be known about a quantum state (accessible information). It was published by Alexander Holevo in 1973.
Suppose Alice wants to send a classical message to Bob by encoding it into a quantum state, and suppose she can prepare a state from some fixed set
\{\rho1,...,\rhon\}
pi
X
X
Y
Y
Holevo's theorem bounds the amount of correlation between the classical registers
X
Y
More precisely, define the accessible information between
X
Y
B | |
I(X:Y|\{\Pi | |
i\} |
i)
pij=pi
B | |
\operatorname{Tr}(\Pi | |
j |
\rhoi)
η\equiv\{(pi,\rhoi)\}i
S
\chi(η)
Note that the Holevo information also equals the quantum mutual information of the classical-quantum state corresponding to the ensemble:with
I(\rhoAB)\equivS(\rhoA)+S(\rhoB)-S(\rhoAB)
\rhoAB
Consider the composite system that describes the entire communication process, which involves Alice's classical input
X
Q
Y
X
\rhoX:=
n | |
\sum\nolimits | |
x=1 |
px|x\rangle\langlex|
n | |
\{|x\rangle\} | |
x=1 |
X
S(X)
\rhoX
H(X)
\{px\}
n | |
x=1 |
S(X) =-\operatorname{tr}\left(\rhoXlog\rhoX\right) =
n | |
-\operatorname{tr}\left(\sum | |
x=1 |
pxlogpx|x\rangle\langlex|\right) =
n | |
-\sum | |
x=1 |
pxlogpx =H(X).
The initial state of the system, where Alice prepares the state
\rhox
px
\rhoXQ:=
n | |
\sum | |
x=1 |
px|x\rangle\langlex| ⊗ \rhox.
Afterwards, Alice sends the quantum state to Bob. As Bob only has access to the quantum system
Q
X
\rho:=
XQ | |
\operatorname{tr} | |
X\left(\rho |
\right)=
n | |
\sum\nolimits | |
x=1 |
px\rhox
\{Ey\}
m | |
y=1 |
\{qy\}
m | |
y=1 |
y=1,2,...,m
Y
l{E}Q(\rhox)=
m | |
\sum | |
y=1 |
qy|x\rhoy|x ⊗ |y\rangle\langley|,
qy|x=\operatorname{tr}\left(Ey\rhox\right)
y
\rhox
\rhoy|x=W\sqrt{Ey}\rhox\sqrt{E
\dagger/q | |
y|x |
W
\rhoXQ'Y:=\left[l{I}X ⊗ l{E}Q\right]\left(\rhoXQ\right)=
m | |
\sum | |
y=1 |
pxqy|x|x\rangle\langlex| ⊗ \rhoy|x ⊗ |y\rangle\langley|.
Here
l{I}X
X
l{E}Q
S(X:Q'Y)\leqS(X:Q)
Q'
S(X:Y)\leqS(X:Q'Y)
S(X:Y)\leqS(X:Q).
On the left-hand side, the quantities of interest depend only on
\rhoXY:=\operatorname{tr}Q'\left(\rhoXQ'Y\right)=
m | |
\sum | |
y=1 |
pxqy|x|x\rangle\langlex| ⊗ |y\rangle\langley| =
m | |
\sum | |
y=1 |
px,y|x,y\rangle\langlex,y|,
px,y=pxqy|x
\rhoXY
\rhoY:=
XY | |
\operatorname{tr} | |
X(\rho |
)
\rhoX
S(X:Y)=S(X)+S(Y)-S(XY)=H(X)+H(Y)-H(XY)=I(X:Y).
Meanwhile,
S(X:Q)
log\rhoXQ=
n | |
log\left(\sum | |
x=1 |
px|x\rangle\langlex| ⊗ \rhox\right) =
n | |
\sum | |
x=1 |
|x\rangle\langlex| ⊗ log\left(px\rhox\right) =
n | |
\sum | |
x=1 |
logpx|x\rangle\langlex| ⊗ IQ+
n | |
\sum | |
x=1 |
|x\rangle\langlex| ⊗ log\rhox,
IQ
Q
\begin{aligned} S(X:Q)&=S(X)+S(Q)-S(XQ)\\ &=S(X)+S(\rho)+\operatorname{tr}\left(\rhoXQlog\rhoXQ\right)\\ &=S(X)+S(\rho)+
n | |
\operatorname{tr}\left(\sum | |
x=1 |
pxlogpx|x\rangle\langlex| ⊗ \rhox\right)+
n | |
\operatorname{tr}\left(\sum | |
x=1 |
px|x\rangle\langlex| ⊗ \rhoxlog\rhox\right)\\ &=S(X)+S(\rho)+
n | |
\underbrace{\operatorname{tr}\left(\sum | |
x=1 |
pxlogpx|x\rangle\langlex|\right)}-S(X)+
n | |
\operatorname{tr}\left(\sum | |
x=1 |
px\rhoxlog\rhox\right)\\ &=S(\rho)+
n | |
\sum | |
x=1 |
px\underbrace{\operatorname{tr}\left(\rhoxlog\rhox\right)}
-S(\rhox) |
\\ &=S(\rho)-
n | |
\sum | |
x=1 |
pxS(\rhox), \end{aligned}
In essence, the Holevo bound proves that given n qubits, although they can "carry" a larger amount of (classical) information (thanks to quantum superposition), the amount of classical information that can be retrieved, i.e. accessed, can be only up to n classical (non-quantum encoded) bits. It was also established, both theoretically and experimentally, that there are computations where quantum bits carry more information through the process of the computation than is possible classically.[2]