The Hill yield criterion developed by Rodney Hill, is one of several yield criteria for describing anisotropic plastic deformations. The earliest version was a straightforward extension of the von Mises yield criterion and had a quadratic form. This model was later generalized by allowing for an exponent m. Variations of these criteria are in wide use for metals, polymers, and certain composites.
The quadratic Hill yield criterion[1] has the form
F(\sigma22-\sigma33)2+G(\sigma33-\sigma11)2+H(\sigma11-\sigma22)2+
2 | |
2L\sigma | |
23 |
+
2 | |
2M\sigma | |
31 |
+
2 | |
2N\sigma | |
12 |
=1~.
\sigmaij
If the axes of material anisotropy are assumed to be orthogonal, we can write
(G+
y) | |
H)~(\sigma | |
1 |
2=1~;~~(F+
y) | |
H)~(\sigma | |
2 |
2=1~;~~(F+
y) | |
G)~(\sigma | |
3 |
2=1
y, | |
\sigma | |
1 |
y, | |
\sigma | |
2 |
y | |
\sigma | |
3 |
F=
y) | |
\cfrac{1}{2}\left[\cfrac{1}{(\sigma | |
2 |
2}+
y) | |
\cfrac{1}{(\sigma | |
3 |
2}-
y) | |
\cfrac{1}{(\sigma | |
1 |
2}\right]
G=
y) | |
\cfrac{1}{2}\left[\cfrac{1}{(\sigma | |
3 |
2}+
y) | |
\cfrac{1}{(\sigma | |
1 |
2}-
y) | |
\cfrac{1}{(\sigma | |
2 |
2}\right]
H=
y) | |
\cfrac{1}{2}\left[\cfrac{1}{(\sigma | |
1 |
2}+
y) | |
\cfrac{1}{(\sigma | |
2 |
2}-
y) | |
\cfrac{1}{(\sigma | |
3 |
2}\right]
y, | |
\tau | |
12 |
y, | |
\tau | |
23 |
y | |
\tau | |
31 |
L=
y) | |
\cfrac{1}{2~(\tau | |
23 |
2}~;~~M=
y) | |
\cfrac{1}{2~(\tau | |
31 |
2}~;~~N=
y) | |
\cfrac{1}{2~(\tau | |
12 |
2}
The quadratic Hill yield criterion for thin rolled plates (plane stress conditions) can be expressed as
2 | |
\sigma | |
1 |
+\cfrac{R0~(1+R90)}{R90~(1+R0)}~\sigma
2 | |
2 |
-\cfrac{2~R0}{1+R0}~\sigma1\sigma2=
y) | |
(\sigma | |
1 |
2
\sigma1,\sigma2
\sigma1
\sigma2
\sigma3=0
R0
R90
For the special case of transverse isotropy we have
R=R0=R90
2 | |
\sigma | |
1 |
+
2 | |
\sigma | |
2 |
-\cfrac{2~R}{1+R}~\sigma1\sigma2=
y) | |
(\sigma | |
1 |
2
The generalized Hill yield criterion[2] has the form
\begin{align} F|\sigma2-\sigma3|m&+G|\sigma3-\sigma1|m+H|\sigma1-\sigma2|m+L|2\sigma1-\sigma2-
m | |
\sigma | |
3| |
\\ &+M|2\sigma2-\sigma3-
m | |
\sigma | |
1| |
+N|2\sigma3-\sigma1-
m | |
\sigma | |
2| |
=
m | |
\sigma | |
y |
~. \end{align}
\sigmai
\sigmay
For transversely isotropic materials with
1-2
F=G
L=M
\begin{align} f:=&F|\sigma2-\sigma
m | |
3| |
+G|\sigma3-\sigma
m | |
1| |
+H|\sigma1-\sigma
m | |
2| |
+L|2\sigma1-\sigma2-
m | |
\sigma | |
3| |
\\ &+L|2\sigma2-\sigma3-\sigma
m | |
1| |
+N|2\sigma3-\sigma1-\sigma
m | |
2| |
-
m | |
\sigma | |
y |
\le0 \end{align}
\sigma1>(\sigma2=\sigma3=0)
R=\cfrac{(2m-1+2)L-N+H}{(2m-1-1)L+2N+F}~.
L=0,H=0.
f:=
m | |
\cfrac{1+2R}{1+R}(|\sigma | |
1| |
+
m) | |
|\sigma | |
2| |
-\cfrac{R}{1+R}|\sigma1+
m | |
\sigma | |
2| |
-
m | |
\sigma | |
y |
\le0
N=0,F=0.
f:=\cfrac{2m-1(1-R)+(R+2)}{(1-2m-1)(1+R)}|\sigma1
m | |
-\sigma | |
2| |
-\cfrac{1}{(1-2m-1)(1+R)}(|2\sigma1-
m | |
\sigma | |
2| |
+|2\sigma2-\sigma
m)- | |
1| |
m | |
\sigma | |
y |
\le0
N=0,H=0.
f:=\cfrac{2m-1(1-R)+(R+2)}{(2+2m-1
m | |
)(1+R)}(|\sigma | |
1| |
m) | |
-|\sigma | |
2| |
+\cfrac{R}{(2+2m-1)(1+R)}(|2\sigma1-
m | |
\sigma | |
2| |
+|2\sigma2-\sigma
m)- | |
1| |
m | |
\sigma | |
y |
\le0
L=0,F=0.
f:=\cfrac{1+2R}{2(1+R)}|\sigma1-
m | |
\sigma | |
2| |
+\cfrac{1}{2(1+R)}|\sigma1+
m | |
\sigma | |
2| |
-
m | |
\sigma | |
y |
\le0
L=0,N=0.
f:=
m | |
\cfrac{1}{1+R}(|\sigma | |
1| |
+
m) | |
|\sigma | |
2| |
+\cfrac{R}{1+R}|\sigma1-\sigma
m | |
2| |
-
m | |
\sigma | |
y |
\le0
Care must be exercised in using these forms of the generalized Hill yield criterion because the yield surfaces become concave (sometimes even unbounded) for certain combinations of
R
m
In 1993, Hill proposed another yield criterion [5] for plane stress problems with planar anisotropy. The Hill93 criterion has the form
\left(\cfrac{\sigma1}{\sigma
2 | |
0}\right) |
+\left(\cfrac{\sigma2}{\sigma90
\sigma0
\sigma90
\sigmab
c,p,q
\begin{align} c&=\cfrac{\sigma0}{\sigma90
R0
R90
The original versions of Hill's yield criterion were designed for material that did not have pressure-dependent yield surfaces which are needed to model polymers and foams.
An extension that allows for pressure dependence is Caddell–Raghava–Atkins (CRA) model [6] which has the form
F(\sigma22-\sigma33)2+G(\sigma33-\sigma11)2+H(\sigma11-\sigma22)2+2L
2 | |
\sigma | |
23 |
+2M
2 | |
\sigma | |
31 |
+2
2 | |
N\sigma | |
12 |
+I\sigma11+J\sigma22+K\sigma33=1~.
Another pressure-dependent extension of Hill's quadratic yield criterion which has a form similar to the Bresler Pister yield criterion is the Deshpande, Fleck and Ashby (DFA) yield criterion [7] for honeycomb structures (used in sandwich composite construction). This yield criterion has the form
F(\sigma22-\sigma33)2+G(\sigma33-\sigma11)2+H(\sigma11-\sigma22)2+2L
2 | |
\sigma | |
23 |
+2M
2 | |
\sigma | |
31 |
+2
2 | |
N\sigma | |
12 |
+K(\sigma11+\sigma22+\sigma33)2=1~.