Hilbert modular variety explained
In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is an algebraic surface obtained by taking a quotient of a product of two copies of the upper half-plane by a Hilbert modular group. More generally, a Hilbert modular variety is an algebraic variety obtained by taking a quotient of a product of multiple copies of the upper half-plane by a Hilbert modular group.
Hilbert modular surfaces were first described by using some unpublished notes written by David Hilbert about 10 years before.
Definitions
If R is the ring of integers of a real quadratic field, then the Hilbert modular group SL2(R) acts on the product H×H of two copies of the upper half plane H.There are several birationally equivalent surfaces related to this action, any of which may be called Hilbert modular surfaces:
- The surface X is the quotient of H×H by SL2(R); it is not compact and usually has quotient singularities coming from points with non-trivial isotropy groups.
- The surface X* is obtained from X by adding a finite number of points corresponding to the cusps of the action. It is compact, and has not only the quotient singularities of X, but also singularities at its cusps.
- The surface Y is obtained from X* by resolving the singularities in a minimal way. It is a compact smooth algebraic surface, but is not in general minimal.
- The surface Y0 is obtained from Y by blowing down certain exceptional -1-curves. It is smooth and compact, and is often (but not always) minimal.
There are several variations of this construction:
- The Hilbert modular group may be replaced by some subgroup of finite index, such as a congruence subgroup.
- One can extend the Hilbert modular group by a group of order 2, acting on the Hilbert modular group via the Galois action, and exchanging the two copies of the upper half plane.
Singularities
showed how to resolve the quotient singularities, and showed how to resolve their cusp singularities.
Properties
Hilbert modular varieties cannot be anabelian.[1]
Classification of surfaces
The papers, and identified their type in the classification of algebraic surfaces. Most of them are surfaces of general type, but several are rational surfaces or blown up K3 surfaces or elliptic surfaces.
Examples
gives a long table of examples.
The Clebsch surface blown up at its 10 Eckardt points is a Hilbert modular surface.
Associated to a quadratic field extension
for
there is an associated Hilbert modular variety
obtained from compactifying a certain quotient variety
and resolving its singularities. Let
denote the upper half plane and let
act on
via
\begin{pmatrix}
a&b\\
c&d\end{pmatrix}(z1,z2)=\left(
,
\right)
where the
are the
Galois conjugates.
[2] The associated quotient variety is denoted
X(p)=G\backslashak{H} x ak{H}
and can be compactified to a variety
, called the
cusps, which are in bijection with the
ideal classes in
. Resolving its singularities gives the variety
called the
Hilbert modular variety of the field extension. From the Bailey-Borel compactification theorem, there is an embedding of this surface into a projective space.
[3] See also
Notes and References
- Book: Ihara, Yasutaka . Yasutaka Ihara . Geometric Galois Actions 1: Around Grothendieck's Esquisse d'un Programme . Nakamura . Hiroaki . Schneps . Leila . Leila Schneps . Lochak . Pierre . Pierre Lochak . Cambridge University Press . 1997 . London Mathematical Society Lecture Note Series (242) . 127-138 . Some illustrative examples for anabelian geometry in high dimensions . 10.1017/CBO9780511758874.010.
- Book: Barth. Wolf P.. Compact Complex Surfaces. Hulek. Klaus. Peters. Chris A. M.. Ven. Antonius. 2004. Springer Berlin Heidelberg. 978-3-540-00832-3. Berlin, Heidelberg. 231. 10.1007/978-3-642-57739-0.
- Baily. W. L.. Borel. A.. November 1966. Compactification of Arithmetic Quotients of Bounded Symmetric Domains. The Annals of Mathematics. 84. 3. 442. 10.2307/1970457. 1970457.