In mathematics, Hermite's identity, named after Charles Hermite, gives the value of a summation involving the floor function. It states that for every real number x and for every positive integer n the following identity holds:[1] [2]
n-1 | |
\sum | |
k=0 |
\left\lfloorx+
k | |
n |
\right\rfloor=\lfloornx\rfloor.
Split
x
x=\lfloorx\rfloor+\{x\}
k'\in\{1,\ldots,n\}
\lfloorx\rfloor=\left\lfloorx+
k'-1 | |
n |
\right\rfloor\lex<\left\lfloorx+
k' | |
n |
\right\rfloor=\lfloorx\rfloor+1.
\lfloorx\rfloor
0=\left\lfloor\{x\}+
k'-1 | |
n |
\right\rfloor\le\{x\}<\left\lfloor\{x\}+
k' | |
n |
\right\rfloor=1.
Therefore,
1- | k' |
n |
\le\{x\}<1-
k'-1 | |
n |
,
and multiplying both sides by
n
n-k'\len\{x\}<n-k'+1.
Now if the summation from Hermite's identity is split into two parts at index
k'
n-1 | |
\begin{align} \sum | |
k=0 |
\left\lfloorx+
k | |
n |
\right\rfloor &
k'-1 | |
=\sum | |
k=0 |
\lfloor
n-1 | |
x\rfloor+\sum | |
k=k' |
(\lfloorx\rfloor+1)=n\lfloorx\rfloor+n-k'\\[8pt] &=n\lfloorx\rfloor+\lfloorn\{x\}\rfloor=\left\lfloorn\lfloorx\rfloor+n\{x\}\right\rfloor=\lfloornx\rfloor. \end{align}
Consider the function
f(x)=\lfloorx\rfloor+\left\lfloorx+
1 | |
n |
\right\rfloor+\ldots+\left\lfloorx+
n-1 | |
n |
\right\rfloor-\lfloornx\rfloor
Then the identity is clearly equivalent to the statement
f(x)=0
x
f\left(x+
1 | |
n |
\right)=\left\lfloorx+
1 | |
n |
\right\rfloor+\left\lfloorx+
2 | |
n |
\right\rfloor+\ldots+\left\lfloorx+1\right\rfloor-\lfloornx+1\rfloor=f(x)
Where in the last equality we use the fact that
\lfloorx+p\rfloor=\lfloorx\rfloor+p
p
f
1/n
f(x)=0
x\in[0,1/n)
f
x