In mathematics, Hermite's cotangent identity is a trigonometric identity discovered by Charles Hermite.[1] Suppose a1, ..., an are complex numbers, no two of which differ by an integer multiple of . Let
An,k=\prod\begin{smallmatrix1\lej\len\ j ≠ k\end{smallmatrix}}\cot(ak-aj)
(in particular, A1,1, being an empty product, is 1). Then
\cot(z-a1) … \cot(z-an)=\cos
n\pi | |
2 |
+
n | |
\sum | |
k=1 |
An,k\cot(z-ak).
The simplest non-trivial example is the case n = 2:
\cot(z-a1)\cot(z-a2)=-1+\cot(a1-a2)\cot(z-a1)+\cot(a2-a1)\cot(z-a2).