Henneberg surface explained
In differential geometry, the Henneberg surface is a non-orientable minimal surface[1] named after Lebrecht Henneberg.
It has parametric equation
\begin{align}
x(u,v)&=2\cos(v)\sinh(u)-(2/3)\cos(3v)\sinh(3u)\\
y(u,v)&=2\sin(v)\sinh(u)+(2/3)\sin(3v)\sinh(3u)\\
z(u,v)&=2\cos(2v)\cosh(2u)
\end{align}
and can be expressed as an order-15 algebraic surface.
[2] It can be viewed as an
immersion of a punctured
projective plane.
[3] Up until 1981 it was the only known non-orientable minimal surface.
[4] The surface contains a semicubical parabola ("Neile's parabola") and can be derived from solving the corresponding Björling problem.[5] [6]
Further reading
- E. Güler; Ö. Kişi; C. Konaxis, Implicit equations of the Henneberg-type minimal surface in the four-dimensional Euclidean space. Mathematics 6(12), (2018) 279. .
- E. Güler; V. Zambak, Henneberg's algebraic surfaces in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2), (2019) 1761–1773. .
Notes and References
- L. Henneberg, Über salche minimalfläche, welche eine vorgeschriebene ebene curve sur geodätishen line haben, Doctoral Dissertation, Eidgenössisches Polythechikum, Zürich, 1875
- Weisstein, Eric W. "Henneberg's Minimal Surface." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/HennebergsMinimalSurface.html
- Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny, Minimal Surfaces, Volume 1. Springer 2010
- M. Elisa G. G. de Oliveira, Some New Examples of Nonorientable Minimal Surfaces, Proceedings of the American Mathematical Society, Vol. 98, No. 4, Dec., 1986
- L. Henneberg, Über diejenige minimalfläche, welche die Neil'sche Paralee zur ebenen geodätischen line hat, Vierteljschr Natuforsch, Ges. Zürich 21 (1876), 66–70.
- Kai-Wing Fung, Minimal Surfaces as Isotropic Curves in C3: Associated minimal surfaces and the Björling's problem. MIT BA Thesis. 2004 http://ocw.mit.edu/courses/mathematics/18-994-seminar-in-geometry-fall-2004/projects/main1.pdf