Heilbronn triangle problem explained
In discrete geometry and discrepancy theory, the Heilbronn triangle problem is a problem of placing points in the plane, avoiding triangles of small area. It is named after Hans Heilbronn, who conjectured that, no matter how points are placed in a given area, the smallest triangle area will be at most inversely proportional to the square of the number of points. His conjecture was proven false, but the asymptotic growth rate of the minimum triangle area remains unknown.
Definition
The Heilbronn triangle problem concerns the placement of
points within a shape in the plane, such as the
unit square or the
unit disk, for a given Each triple of points form the three vertices of a
triangle, and among these triangles, the problem concerns the smallest triangle, as measured by area. Different placements of points will have different smallest triangles, and the problem asks: how should
points be placed to maximize the area of the smallest
in the plane, meaning that it stays within a bounded distance from the origin and that points are allowed to be placed on its boundary. In most work on this problem,
is additionally a
convex set of nonzero area. When three of the placed points
lie on a line, they are considered as forming a
degenerate triangle whose area is defined to be zero, so placements that maximize the smallest triangle will not have collinear triples of points. The assumption that the shape is compact implies that there exists an optimal placement of
points, rather than only a sequence of placements approaching optimality. The number
may be defined as the area of the smallest triangle in this optimal An example is shown in the figure, with six points in a unit square. These six points form
different triangles, four of which are shaded in the figure. Six of these 20 triangles, with two of the shaded shapes, have area 1/8; the remaining 14 triangles have larger areas. This is the optimal placement of six points in a unit square: all other placements form at least one triangle with area 1/8 or smaller. Therefore,
Although researchers have studied the value of
for specific shapes and specific small numbers of points, Heilbronn was concerned instead about its
asymptotic behavior: if the shape
is held fixed, but
varies, how does the area of the smallest triangle vary That is, Heilbronn's question concerns the growth rate as a function For any two shapes
the numbers
and
differ only by a constant factor, as any placement of
points within
can be scaled by an
affine transformation to fit changing the minimum triangle area only by a constant. Therefore, in bounds on the growth rate of
that omit the
constant of proportionality of that growth, the choice of
is irrelevant and the subscript may be
Heilbronn's conjecture and its disproof
Heilbronn conjectured prior to 1951 that the minimum triangle area always shrinks rapidly as a function —more specifically, inversely proportional to the square In terms of big O notation, this can be expressed as the boundIn the other direction, Paul Erdős found examples of point sets with minimum triangle area proportional demonstrating that, if true, Heilbronn's conjectured bound could not be strengthened. Erdős formulated the no-three-in-line problem, on large sets of grid points with no three in a line, to describe these examples. As Erdős observed, when
is a
prime number, the set of
points
on an
integer grid (for have no three collinear points, and therefore by
Pick's formula each of the triangles they form has area at When these grid points are scaled to fit within a unit square, their smallest triangle area is proportional matching Heilbronn's conjectured upper bound. If
is not prime, then a similar construction using a prime number close to
achieves the same asymptotic lower
eventually disproved Heilbronn's conjecture, by using the probabilistic method to find sets of points whose smallest triangle area is larger than the ones found by Erdős. Their construction involves the following steps:
points in the unit square, for
- Remove all pairs of points that are unexpectedly close together.
- Prove that there are few remaining low-area triangles and therefore only a sublinear number of cycles formed by two, three, or four low-area triangles. Remove all points belonging to these cycles.
- Apply a triangle removal lemma for 3-uniform hypergraphs of high girth to show that, with high probability, the remaining points include a subset of
points that do not form any small-area triangles.The area resulting from their construction grows asymptotically as
The proof can be derandomized, leading to a polynomial-time algorithm for constructing placements with this triangle area.
Upper bounds
Every set of
points in the unit square forms a triangle of area at most inversely proportional One way to see this is to
triangulate the
convex hull of the given point and choose the smallest of the triangles in the triangulation. Another is to sort the points by their and to choose the three consecutive points in this ordering whose are the closest together. In the first paper published on the Heilbronn triangle problem, in 1951,
Klaus Roth proved a stronger upper bound of the form
The best bound known to date is of the form
for some proven by .
A new upper bound equal to
was proven by .
Specific shapes and numbers
has investigated the optimal arrangements of
points in a square, for
up to 16. Goldberg's constructions for up to six points lie on the boundary of the square, and are placed to form an
affine transformation of the vertices of a
regular polygon. For larger values improved Goldberg's bounds, and for these values the solutions include points interior to the square. These constructions have been proven optimal for up to seven points. The proof used a computer search to subdivide the
configuration space of possible arrangements of the points into 226 different subproblems, and used
nonlinear programming techniques to show that in 225 of those cases, the best arrangement was not as good as the known bound. In the remaining case, including the eventual optimal solution, its optimality was proven using
symbolic computation techniques.
The following are the best known solutions for 7–12 points in a unit square, found through simulated annealing; the arrangement for seven points is known to be optimal.
Instead of looking for optimal placements for a given shape, one may look for an optimal shape for a given number of points. Among convex shapes
with area one, the regular hexagon is the one that for this shape, with six points optimally placed at the hexagon vertices. The convex shapes of unit area that maximize
have
Variations
There have been many variations of this problem including the case of a uniformly random set of points, for which arguments based on either Kolmogorov complexity or Poisson approximation show that the expected value of the minimum area is inversely proportional to the cube of the number of points. Variations involving the volume of higher-dimensional simplices have also been studied.
Rather than considering simplices, another higher-dimensional version adds another and asks for placements of
points in the unit
hypercube that maximize the minimum volume of the
convex hull of any subset of
points. For
these subsets form simplices but for larger values relative they can form more complicated shapes. When
is sufficiently large relative randomly placed point sets have minimum convex hull No better bound is possible; any placement has
points with obtained by choosing some
consecutive points in coordinate order. This result has applications in
range searching data structures.
See also
- Danzer set, a set of points that avoids empty triangles of large area
External links
- Erich's Packing Center, by Erich Friedman, including the best known solutions to the Heilbronn problem for small values of
for squares, circles, equilateral triangles, and convex regions of variable shape but fixed area